论文标题
腹侧着陆的全球最佳事件分歧估计
Globally Optimal Event-Based Divergence Estimation for Ventral Landing
论文作者
论文摘要
事件传感是受到生物启发的飞行指导和控制系统的主要组成部分。我们探讨了事件摄像机预测与腹侧着陆期间表面的时间接触(TTC)的用法。这是通过估计差异(逆TTC)的差异来实现的,即径向光流的速率,是从着陆期间产生的事件流。我们的核心贡献是针对基于事件的差异估计的一种新颖的对比度最大化公式,以及一种分支和结合算法,以精确地提高对比度并找到最佳的差异值。进行GPU加速度以加快全球算法。另一个贡献是一个新的数据集,其中包含来自腹面着陆的真实事件流,该数据集用于测试和基准我们的方法。由于全局优化,与其他启发式差异估计器或基于事件的光流方法相比,我们的算法更有能力恢复真正的差异。随着GPU加速,我们的方法还可以实现竞争性的运行时间。
Event sensing is a major component in bio-inspired flight guidance and control systems. We explore the usage of event cameras for predicting time-to-contact (TTC) with the surface during ventral landing. This is achieved by estimating divergence (inverse TTC), which is the rate of radial optic flow, from the event stream generated during landing. Our core contributions are a novel contrast maximisation formulation for event-based divergence estimation, and a branch-and-bound algorithm to exactly maximise contrast and find the optimal divergence value. GPU acceleration is conducted to speed up the global algorithm. Another contribution is a new dataset containing real event streams from ventral landing that was employed to test and benchmark our method. Owing to global optimisation, our algorithm is much more capable at recovering the true divergence, compared to other heuristic divergence estimators or event-based optic flow methods. With GPU acceleration, our method also achieves competitive runtimes.