论文标题
表征量子计算机上的非平衡相变
Characterizing a non-equilibrium phase transition on a quantum computer
论文作者
论文摘要
在物质阶段之间的过渡时,物理系统可以表现出与微观细节无关的普遍行为。在量子多体系统中探索这种行为是一个具有挑战性且实际上重要的问题,可以通过量子计算机解决,可能比经典计算机更快。在这项工作中,我们使用Quantinuum H1-1量子计算机实现了简单的经典疾病扩散过程的量子扩展,该过程已知可以在主动和吸收状态之间表现出非平衡相变。使用基于实时条件逻辑(在量子误差校正方面广泛使用)的技术,例如Qubit-Reuse和误差避免,我们能够实施具有$ 73 $站点的大型实例,最高$ 72 $电路层,并定量地确定了模型的关键属性。这项工作证明了能够重置,测量和有条件逻辑的量子计算机如何能够研究量子多体物理学中的困难问题:开放量子系统动力学和非平衡相变的模拟。
At transitions between phases of matter, physical systems can exhibit universal behavior independent of their microscopic details. Probing such behavior in quantum many-body systems is a challenging and practically important problem that can be solved by quantum computers, potentially exponentially faster than by classical computers. In this work, we use the Quantinuum H1-1 quantum computer to realize a quantum extension of a simple classical disease spreading process that is known to exhibit a non-equilibrium phase transition between an active and absorbing state. Using techniques such as qubit-reuse and error avoidance based on real-time conditional logic (utilized extensively in quantum error correction), we are able to implement large instances of the model with $73$ sites and up to $72$ circuit layers, and quantitatively determine the model's critical properties. This work demonstrates how quantum computers capable of mid-circuit resets, measurements, and conditional logic enable the study of difficult problems in quantum many-body physics: the simulation of open quantum system dynamics and non-equilibrium phase transitions.