论文标题
通过分子间电位的湍流:低马赫数下气流的弱压缩模型
Turbulence via intermolecular potential: A weakly compressible model of gas flow at low Mach number
论文作者
论文摘要
在最近的著作中,我们提出了通过分子间电位的平均场效应惯性气流中的湍流理论。我们发现,在惯性流动中,湍流确实是从层流初始条件自发发展的,就像在自然界和实验中所观察到的那样。但是,我们还发现惯性流模型中的密度和温度是不切实际的。当前工作的目的是证明以低马赫数以低密度和温度以更现实的方式进行的可压缩,湍流的技术可能性。在这里,我们着重于对压力变量的新处理,该方法构成了可压缩,不可压缩和惯性流量之间的妥协。与不可压缩的流相似,压力变量的提议方程是人造的,而不是直接源自动力学公式。但是,与不可压缩的流动不同,我们的压力方程仅抑制速度的差异,而不是将其直接设置为零。我们发现,湍流在我们弱化的模型中形成,就像在惯性流程模型中一样,但密度和温度的行为更加现实。
In our recent works we proposed a theory of turbulence in inertial gas flow via the mean field effect of an intermolecular potential. We found that, in inertial flow, turbulence indeed spontaneously develops from a laminar initial condition, just as observed in nature and experiments. However, we also found that density and temperature in our inertial flow model behave unrealistically. The goal of the current work is to demonstrate technical possibility of modeling compressible, turbulent flow at low Mach number where both density and temperature behave in a more realistic fashion. Here we focus on a new treatment of the pressure variable, which constitutes a compromise between compressible, incompressible and inertial flow. Similarly to incompressible flow, the proposed equation for the pressure variable is artificial, rather than derived directly from kinetic formulation. However, unlike that for incompressible flow, our pressure equation only damps the divergence of velocity, instead of setting it directly to zero. We find that turbulence develops in our weakly compressible model much like it does in the inertial flow model, but density and temperature behave more realistically.