论文标题
量子步行中拓扑阶段的相对同拷贝方法
Relative homotopy approach to topological phases in quantum walks
论文作者
论文摘要
离散时间量子步行(DTQWS)为实现非互动系统中许多拓扑阶段的实现提供了方便的平台。它们通常比具有静态哈密顿量的系统提供更多的可能性。然而,研究人员仍在寻找保护拓扑阶段和适当拓扑不变的定义的DTQW对称性。尽管大多数DTQW对该主题的研究都集中在所谓的分裂量子量步中,但在更基本的模型中可以观察到两个不同的拓扑阶段。在这里,我们将基本DTQW的拓扑特性直接从布里渊区的映射到Bloch Hamiltonian。我们表明,对于翻译对称系统,它们可以以相对于特殊点的同喻为特征。我们还提出了与此概念相对应的新拓扑不变的。这个不变表示两个不同阶段之间界面处的边缘状态数。
Discrete-time quantum walks (DTQWs) provide a convenient platform for a realisation of many topological phases in noninteracting systems. They often offer more possibilities than systems with a static Hamiltonian. Nevertheless, researchers are still looking for DTQW symmetries protecting topological phases and for definitions of appropriate topological invariants. Although majority of DTQW studies on this topic focus on the so called split-step quantum walk, two distinct topological phases can be observed in more basic models. Here we infer topological properties of the basic DTQWs directly from the mapping of the Brillouin zone to the Bloch Hamiltonian. We show that for translation symmetric systems they can be characterized by a homotopy relative to special points. We also propose a new topological invariant corresponding to this concept. This invariant indicates the number of edge states at the interface between two distinct phases.