论文标题

Hilbert-Schmidt独立优化的分发检测

Out-of-Distribution Detection with Hilbert-Schmidt Independence Optimization

论文作者

Lin, Jingyang, Wang, Yu, Cai, Qi, Pan, Yingwei, Yao, Ting, Chao, Hongyang, Mei, Tao

论文摘要

在AI安全中,离群值的检测任务一直发挥着关键作用。处理这项任务存在巨大的挑战。观察结果表明,深度神经网络分类器通常倾向于以高信心将分布(OOD)输入分为分配类别。现有的工作试图通过在培训期间向分类器暴露于分类器时明确对分类器施加不确定性来解决问题。在本文中,我们提出了一种替代概率范式,该概率范式实际上对OOD检测任务既有用,又可行。特别是,我们在培训过程中施加了近距离和异常数据之间的统计独立性,以确保inlier数据在培训期间向深度估计器显示有关OOD数据的信息很少。具体而言,我们通过Hilbert-Schmidt独立标准(HSIC)估算了Inlier和离群数据之间的统计依赖性,并且在培训期间对此类度量进行了惩罚。我们还将方法与推理期间的新统计测试相关联,并与我们的原则动机相关联。经验结果表明,我们的方法对各种基准测试的OOD检测是有效且鲁棒的。与SOTA模型相比,我们的方法在FPR95,AUROC和AUPR指标方面取得了重大改进。代码可用:\ url {https://github.com/jylins/hone}。

Outlier detection tasks have been playing a critical role in AI safety. There has been a great challenge to deal with this task. Observations show that deep neural network classifiers usually tend to incorrectly classify out-of-distribution (OOD) inputs into in-distribution classes with high confidence. Existing works attempt to solve the problem by explicitly imposing uncertainty on classifiers when OOD inputs are exposed to the classifier during training. In this paper, we propose an alternative probabilistic paradigm that is both practically useful and theoretically viable for the OOD detection tasks. Particularly, we impose statistical independence between inlier and outlier data during training, in order to ensure that inlier data reveals little information about OOD data to the deep estimator during training. Specifically, we estimate the statistical dependence between inlier and outlier data through the Hilbert-Schmidt Independence Criterion (HSIC), and we penalize such metric during training. We also associate our approach with a novel statistical test during the inference time coupled with our principled motivation. Empirical results show that our method is effective and robust for OOD detection on various benchmarks. In comparison to SOTA models, our approach achieves significant improvement regarding FPR95, AUROC, and AUPR metrics. Code is available: \url{https://github.com/jylins/hood}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源