论文标题

概率,物理和神经网络之间的联系

A connection between probability, physics and neural networks

论文作者

Ranftl, Sascha

论文摘要

我们说明了一种可以利用用于构建先验遵守物理定律的神经网络的方法。我们从简单的单层神经网络(NN)开始,但避免选择激活功能。在某些条件和无限宽度限制下,我们可以应用中央限制定理,NN输出变为高斯。然后,我们可以通过依靠高斯过程(GP)理论来调查和操纵极限网络。据观察,作用于GP的线性算子再次产生GP。对于定义微分方程并描述物理定律的差分运算符也是如此。如果我们要求GP或等效地遵守物理定律,那么这将产生协方差函数或GP内核的方程,其解决方案等效地限制了模型以遵守物理定律。然后,中心限制定理建议可以通过选择激活函数来构建NNS来遵守物理定律,从而使它们在无限宽度限制中匹配特定的内核。以这种方式构建的激活函数可以保证NN先验遵守物理学,直至非限制网络宽度的近似误差。讨论了均匀的1d-螺旋方程的简单示例,并将其与天真的内核和激活进行了比较。

We illustrate an approach that can be exploited for constructing neural networks which a priori obey physical laws. We start with a simple single-layer neural network (NN) but refrain from choosing the activation functions yet. Under certain conditions and in the infinite-width limit, we may apply the central limit theorem, upon which the NN output becomes Gaussian. We may then investigate and manipulate the limit network by falling back on Gaussian process (GP) theory. It is observed that linear operators acting upon a GP again yield a GP. This also holds true for differential operators defining differential equations and describing physical laws. If we demand the GP, or equivalently the limit network, to obey the physical law, then this yields an equation for the covariance function or kernel of the GP, whose solution equivalently constrains the model to obey the physical law. The central limit theorem then suggests that NNs can be constructed to obey a physical law by choosing the activation functions such that they match a particular kernel in the infinite-width limit. The activation functions constructed in this way guarantee the NN to a priori obey the physics, up to the approximation error of non-infinite network width. Simple examples of the homogeneous 1D-Helmholtz equation are discussed and compared to naive kernels and activations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源