论文标题

具有高度嘈杂数据的动态系统发现的压缩感应辅助混合整数优化

Compressive-sensing-assisted mixed integer optimization for dynamical system discovery with highly noisy data

论文作者

Shi, Zhongshun, Ma, Hang, Tran, Hoang, Zhang, Guannan

论文摘要

对动态系统的管理方程式的识别是科学和工程学基础研究的挑战。机器学习取得了巨大的成功,可以从数据中学习和预测动态系统。但是,仍然存在基本挑战:从高度嘈杂的数据中发现确切的管理方程式。在目前的工作中,我们提出了一种压缩感应辅助的混合整数优化(CS-MIO)方法,以从现代离散优化镜头向前迈出一步。特别是,我们首先将问题提出为混合整数优化模型。模型的离散优化性质通过基数约束导致确切的变量选择,从而可以从嘈杂数据中确切发现管理方程的强大能力。通过将压缩感应和正则化技术纳入高度嘈杂的数据和高维问题,进一步增强了这种能力。关于经典动力学系统的案例研究表明,CS-MIO可以从大噪声数据中发现确切的管理方程,与最新方法相比,最多两个较大的噪声级数。我们还通过混乱的Lorenz 96系统展示了其对高维动力系统识别的有效性。

The identification of governing equations for dynamical systems is everlasting challenges for the fundamental research in science and engineering. Machine learning has exhibited great success to learn and predict dynamical systems from data. However, the fundamental challenges still exist: discovering the exact governing equations from highly noisy data. In present work, we propose a compressive sensing-assisted mixed integer optimization (CS-MIO) method to make a step forward from a modern discrete optimization lens. In particular, we first formulate the problem into a mixed integer optimization model. The discrete optimization nature of the model leads to exact variable selection by means of cardinality constraint, and hereby powerful capability of exact discovery of governing equations from noisy data. Such capability is further enhanced by incorporating compressive sensing and regularization techniques for highly noisy data and high-dimensional problems. The case studies on classical dynamical systems have shown that CS-MIO can discover the exact governing equations from large-noise data, with up to two orders of magnitude larger noise comparing with state-of-the-art method. We also show its effectiveness for high-dimensional dynamical system identification through the chaotic Lorenz 96 system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源