论文标题
通过重复学习率进行超参数调整,改善多保真优化
Improving Multi-fidelity Optimization with a Recurring Learning Rate for Hyperparameter Tuning
论文作者
论文摘要
尽管卷积神经网络(CNN)的演变发展,但它们的性能令人惊讶地取决于超参数的选择。但是,由于现代CNN的较长训练时间,有效地探索大型超参数搜索空间仍然具有挑战性。多保真优化可以通过提前终止无主张的配置来探索更多的超参数配置。但是,它通常会导致选择作为高性能配置的训练,通常在早期阶段会缓慢收敛。在本文中,我们提出了具有重复学习率(MORL)的多保真优化,该率将CNNS的优化过程纳入了多余性优化。莫尔减轻了缓慢启动的问题,并实现了更精确的低保真近似。我们对一般图像分类,转移学习和半监督学习的全面实验证明了MORL对其他多效率优化方法的有效性,例如连续的减半算法(SHA)和HyperBand。此外,它可以在实际预算内进行手工调整的超参数配置,从而实现重大的性能提高。
Despite the evolution of Convolutional Neural Networks (CNNs), their performance is surprisingly dependent on the choice of hyperparameters. However, it remains challenging to efficiently explore large hyperparameter search space due to the long training times of modern CNNs. Multi-fidelity optimization enables the exploration of more hyperparameter configurations given budget by early termination of unpromising configurations. However, it often results in selecting a sub-optimal configuration as training with the high-performing configuration typically converges slowly in an early phase. In this paper, we propose Multi-fidelity Optimization with a Recurring Learning rate (MORL) which incorporates CNNs' optimization process into multi-fidelity optimization. MORL alleviates the problem of slow-starter and achieves a more precise low-fidelity approximation. Our comprehensive experiments on general image classification, transfer learning, and semi-supervised learning demonstrate the effectiveness of MORL over other multi-fidelity optimization methods such as Successive Halving Algorithm (SHA) and Hyperband. Furthermore, it achieves significant performance improvements over hand-tuned hyperparameter configuration within a practical budget.