论文标题

用傅立叶神经操作员在可变速度模型上求解地震波方程

Solving Seismic Wave Equations on Variable Velocity Models with Fourier Neural Operator

论文作者

Li, Bian, Wang, Hanchen, Feng, Shihang, Yang, Xiu, Lin, Youzuo

论文摘要

在地下地震成像的研究中,求解声波方程是现有模型中的关键成分。深度学习的进步可以通过应用神经网络来识别输入和解决方案之间的映射来求​​解部分微分方程,包括波动方程。当要解决许多实例时,这种方法可以比传统的数值方法更快。以前专注于通过神经网络求解波动方程的作品考虑了单个速度模型或多个简单速度模型,这在实践中受到限制。取而代之的是,受操作员学习的概念的启发,这项工作利用了傅立叶神经操作员(FNO)在可变速度模型的背景下有效地学习频域地震波场。我们还提出了一个与傅里叶神经操作员(PFNO)并行的新框架,以有效地训练基于FNO的求解器,给定多个源位置和频率。数值实验证明了OpenFWI数据集中使用复杂速度模型的FNO和PFNO的高精度。此外,跨数据集泛化测试验证了PFNO适应分布速度模型的模型。此外,在标签中存在随机噪声的情况下,PFNO具有强大的性能。最后,PFNO在大规模测试数据集上接受了比传统的有限差异方法更高的计算效率。上述优势赋予了基于FNO的求解器的潜力,可以为地震波研究建立强大的模型。

In the study of subsurface seismic imaging, solving the acoustic wave equation is a pivotal component in existing models. The advancement of deep learning enables solving partial differential equations, including wave equations, by applying neural networks to identify the mapping between the inputs and the solution. This approach can be faster than traditional numerical methods when numerous instances are to be solved. Previous works that concentrate on solving the wave equation by neural networks consider either a single velocity model or multiple simple velocity models, which is restricted in practice. Instead, inspired by the idea of operator learning, this work leverages the Fourier neural operator (FNO) to effectively learn the frequency domain seismic wavefields under the context of variable velocity models. We also propose a new framework paralleled Fourier neural operator (PFNO) for efficiently training the FNO-based solver given multiple source locations and frequencies. Numerical experiments demonstrate the high accuracy of both FNO and PFNO with complicated velocity models in the OpenFWI datasets. Furthermore, the cross-dataset generalization test verifies that PFNO adapts to out-of-distribution velocity models. Moreover, PFNO has robust performance in the presence of random noise in the labels. Finally, PFNO admits higher computational efficiency on large-scale testing datasets than the traditional finite-difference method. The aforementioned advantages endow the FNO-based solver with the potential to build powerful models for research on seismic waves.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源