论文标题
为高维及时性生成正式的安全保证
Generating Formal Safety Assurances for High-Dimensional Reachability
论文作者
论文摘要
为自主系统提供正式的安全性和绩效保证,变得越来越重要。 Hamilton-Jacobi(HJ)可达性分析是提供这些保证的流行形式验证工具,因为它可以处理一般的非线性系统动力学,有限的对抗系统干扰以及状态和输入约束。但是,它涉及求解PDE,其计算和记忆复杂性相对于状态维度呈指数尺度,使其直接在大规模系统上使用。最近提出的一种称为DeepReach的方法通过利用正弦神经PDE求解器来解决高维的可及性问题,从而克服了这一挑战,其计算需求量表与基础可触及的管的复杂性,而不是状态空间维度。不幸的是,神经网络可能会犯错误,因此计算的解决方案可能不安全,这还没有达到我们提供正式安全保证的总体目标。在这项工作中,我们提出了一种计算DeepReach解决方案绑定的错误的方法。然后可以使用该误差绑定进行可及的管校正,从而导致真实可及管的安全近似。我们还提出了一种基于方案的优化方法,以计算一般非线性动力学系统的此误差校正的概率。我们证明了所提出的方法在获得高维火箭陆和多车碰撞问题的概率安全到达管方面的功效。
Providing formal safety and performance guarantees for autonomous systems is becoming increasingly important. Hamilton-Jacobi (HJ) reachability analysis is a popular formal verification tool for providing these guarantees, since it can handle general nonlinear system dynamics, bounded adversarial system disturbances, and state and input constraints. However, it involves solving a PDE, whose computational and memory complexity scales exponentially with respect to the state dimensionality, making its direct use on large-scale systems intractable. A recently proposed method called DeepReach overcomes this challenge by leveraging a sinusoidal neural PDE solver for high-dimensional reachability problems, whose computational requirements scale with the complexity of the underlying reachable tube rather than the state space dimension. Unfortunately, neural networks can make errors and thus the computed solution may not be safe, which falls short of achieving our overarching goal to provide formal safety assurances. In this work, we propose a method to compute an error bound for the DeepReach solution. This error bound can then be used for reachable tube correction, resulting in a safe approximation of the true reachable tube. We also propose a scenario-based optimization approach to compute a probabilistic bound on this error correction for general nonlinear dynamical systems. We demonstrate the efficacy of the proposed approach in obtaining probabilistically safe reachable tubes for high-dimensional rocket-landing and multi-vehicle collision-avoidance problems.