论文标题
关于法律判断预测的跨X转移的实证研究
An Empirical Study on Cross-X Transfer for Legal Judgment Prediction
论文作者
论文摘要
事实证明,跨语性转移学习在各种自然语言处理(NLP)任务中有用,但是它在法律NLP的背景下被研究了,而在法律判断预测(LJP)中根本不存在。我们使用三语瑞士判断数据集探索LJP上的转移学习技术,包括用三种语言编写的案例。我们发现,跨语性转移可以改善语言的总体结果,尤其是当我们使用基于适配器的微调时。最后,我们使用3倍较大的培训语料库使用机器翻译版本来增强培训数据集,从而进一步提高模型的性能。此外,我们进行了一项分析,探讨了跨域和跨区域转移的效果,即跨域(法定区域)或地区培训模型。我们发现,在两个环境(法律领域,起源区域)中,在所有小组中训练的模型总体表现更好,而在最差的情况下,它们也提高了结果。最后,当我们雄心勃勃地采用跨寿司转移时,我们报告了改进的结果,在此我们通过印度法律案件进一步增强数据集。
Cross-lingual transfer learning has proven useful in a variety of Natural Language Processing (NLP) tasks, but it is understudied in the context of legal NLP, and not at all in Legal Judgment Prediction (LJP). We explore transfer learning techniques on LJP using the trilingual Swiss-Judgment-Prediction dataset, including cases written in three languages. We find that cross-lingual transfer improves the overall results across languages, especially when we use adapter-based fine-tuning. Finally, we further improve the model's performance by augmenting the training dataset with machine-translated versions of the original documents, using a 3x larger training corpus. Further on, we perform an analysis exploring the effect of cross-domain and cross-regional transfer, i.e., train a model across domains (legal areas), or regions. We find that in both settings (legal areas, origin regions), models trained across all groups perform overall better, while they also have improved results in the worst-case scenarios. Finally, we report improved results when we ambitiously apply cross-jurisdiction transfer, where we further augment our dataset with Indian legal cases.