论文标题
$ \ MATHCAL {U} $ - 紧凑型组拓扑,无汇合序列,无汇合序列
$\mathcal{U}$-compact group topologies without convergent sequences on countably cofinal torsion-free Abelian groups
论文作者
论文摘要
我们获得了一种强迫构造,该结构表明,一致的是,无扭转的Abelian Group $ \ Mathbb {q}^{(λ)} $接纳了Hausdorff群体拓扑,该拓扑也是$ \ Mathcal {u} $ compact and compact-- compact and compact,并且不包含$λ$的$ cofinity $ cofinational an $ \ Mathcal {U} $是选择性超级滤波器。这回答了Arxiv中提出的一个问题:1904.05928。
We obtain a forcing construction that shows that it is consistent that the torsion-free Abelian group $\mathbb{Q}^{(λ)}$ admits a Hausdorff group topology which is also $\mathcal{U}$-compact and contains no non-trivial convergent sequences, where $λ$ is a cardinal whose cofinality is $ω$ and $\mathcal{U}$ is a selective ultrafilter. This answers a question posed in arXiv:1904.05928.