论文标题
SchrödingerSemigroups的尖锐高斯上限
Sharp Gaussian upper bounds for Schrödinger semigroups on the half-line
论文作者
论文摘要
1998年,V。Liskevich和Y. Semenov在$ \ Mathbb r^3 $上显示了SchrödingerSemogroups的尖锐高斯上限,并且具有满足全球Kato Class条件的潜力。使用类似的基本思想,我们在半行上显示了SchrödingerSemigroups的尖锐高斯上限,也假设有合适的全球Kato班级条件。我们的证明策略包括一种加权超包估计的新技术。
In 1998, V. Liskevich and Y. Semenov showed sharp Gaussian upper bounds for Schrödinger semigroups on $\mathbb R^3$ with potentials satisfying a global Kato class condition. Using similar basic ideas we show sharp Gaussian upper bounds for Schrödinger semigroups on the half-line, also assuming a suitable global Kato class condition. Our proof strategy includes a new technique of weighted ultracontractivity estimates.