论文标题

关于当地紧凑的阿贝里安抛光群引起的等效关系

On equivalence relations induced by locally compact abelian Polish groups

论文作者

Ding, Longyun, Zheng, Yang

论文摘要

给定波兰组$ g $,让$ e(g)$是正确的coset等价关系$ g^ω/c(g)$,其中$ c(g)$是$ g $中所有收敛序列的组。 $ g_0 $表示,波兰$ g $的身份的连接组件表示。令$ g,h $是本地紧凑的阿贝里安抛光群。如果$ e(g)\ leq_b e(h)$,则有一个连续的同构$ s:g_0 \ rightarrow h_0 $,使得$ \ ker(s)$是非架构的。当$ g $连接并紧凑时,相反也是如此。对于$ n \ in {\ mathbb n}^+$,部分有序的集合$ p(ω)/\ mbox {fin} $可以嵌入$ e({\ mathbb r}^n)$和$ e({\ mathbb t}^n)$({\ Mathbb r}^n)$({\ Mathbb r}^n)之间的borel等价关系。

Given a Polish group $G$, let $E(G)$ be the right coset equivalence relation $G^ω/c(G)$, where $c(G)$ is the group of all convergent sequences in $G$. The connected component of the identity of a Polish group $G$ is denoted by $G_0$. Let $G,H$ be locally compact abelian Polish groups. If $E(G)\leq_B E(H)$, then there is a continuous homomorphism $S:G_0\rightarrow H_0$ such that $\ker(S)$ is non-archimedean. The converse is also true when $G$ is connected and compact. For $n\in{\mathbb N}^+$, the partially ordered set $P(ω)/\mbox{Fin}$ can be embedded into Borel equivalence relations between $E({\mathbb R}^n)$ and $E({\mathbb T}^n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源