论文标题

LOCAL_INN:具有可逆神经网络的隐式地图表示和本地化

Local_INN: Implicit Map Representation and Localization with Invertible Neural Networks

论文作者

Zang, Zirui, Zheng, Hongrui, Betz, Johannes, Mangharam, Rahul

论文摘要

机器人定位是使用地图和传感器测量结果找到机器人姿势的反问题。近年来,可逆神经网络(INNS)成功地解决了各个领域的模棱两可的反问题。本文提出了一个解决旅馆本地化问题的框架。我们设计了一个在逆路径中提供隐式映射表示形式的旅馆。通过对评估中的潜在空间进行抽样,局部\ _inn输出机器人以协方差构成,可用于估计不确定性。我们表明,本地\ _inn的本地化性能与延迟较低的当前方法相当。我们使用训练集的外观显示了从本地\ _inn的详细的2D和3D地图重建。我们还使用本地\ _inn提供了一种全球本地化算法来解决绑架问题。

Robot localization is an inverse problem of finding a robot's pose using a map and sensor measurements. In recent years, Invertible Neural Networks (INNs) have successfully solved ambiguous inverse problems in various fields. This paper proposes a framework that solves the localization problem with INN. We design an INN that provides implicit map representation in the forward path and localization in the inverse path. By sampling the latent space in evaluation, Local\_INN outputs robot poses with covariance, which can be used to estimate the uncertainty. We show that the localization performance of Local\_INN is on par with current methods with much lower latency. We show detailed 2D and 3D map reconstruction from Local\_INN using poses exterior to the training set. We also provide a global localization algorithm using Local\_INN to tackle the kidnapping problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源