论文标题

$ g $ stellations and crepant决议的模型I:Abelian案件

Moduli of $G$-constellations and crepant resolutions I: the abelian case

论文作者

Yamagishi, Ryo

论文摘要

对于有限的Abelian子组$ g \ subset sl_n(\ Mathbb {C})$,我们研究给定的毛茸茸的分辨率$ x $的商的$ \ mathbb {c}^n/g $作为$ g $ -constellations的Moduli空间获得。特别是,我们表明,如果$ x $承认一个天然的$ g $ stellation tellation家族,从logvinenko的意义上讲,所有纤维都可以不可分之为$ \ mathbb {c} [\ mathbb {c}^n] $ - 模块 - $ x $对于$ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g $ g。

For a finite abelian subgroup $G\subset SL_n(\mathbb{C})$, we study whether a given crepant resolution $X$ of the quotient variety $\mathbb{C}^n/G$ is obtained as a moduli space of $G$-constellations. In particular we show that, if $X$ admits a natural $G$-constellation family in the sense of Logvinenko over it with all fibers being indecomposable as $\mathbb{C}[\mathbb{C}^n]$-modules, then $X$ is isomorphic to the normalization of a fine moduli space of $G$-constellations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源