论文标题

域:域适应工具箱用于医疗数据分析

DomainATM: Domain Adaptation Toolbox for Medical Data Analysis

论文作者

Guan, Hao, Liu, Mingxia

论文摘要

域适应性(DA)是基于现代机器学习的医学数据分析的重要技术,旨在减少不同医疗数据集之间的分布差异。适当的域适应方法可以通过从多个站点/中心获取的数据来显着增强统计能力。为此,我们开发了用于医疗数据分析(DomainAtm)的域适应工具箱 - 一个开放式软件包,旨在快速促进,并轻松自定义域适应方法用于医疗数据分析。域名在MATLAB中实现,并具有用户友好的图形接口,它由一系列流行的数据适应算法组成,这些算法已广泛应用于医学图像分析和计算机视觉。借助域名,研究人员能够促进对医疗数据分析的不同适应方法的快速特征级别和图像级适应,可视化和性能评估。更重要的是,域名使用户能够通过脚本来开发和测试自己的适应方法,从而大大增强其效用和可扩展性。三个示例实验表明了概述和域的概述特征和用法,并证明了其有效性,简单性和灵活性。该软件,源代码和手册可在线提供。

Domain adaptation (DA) is an important technique for modern machine learning-based medical data analysis, which aims at reducing distribution differences between different medical datasets. A proper domain adaptation method can significantly enhance the statistical power by pooling data acquired from multiple sites/centers. To this end, we have developed the Domain Adaptation Toolbox for Medical data analysis (DomainATM) - an open-source software package designed for fast facilitation and easy customization of domain adaptation methods for medical data analysis. The DomainATM is implemented in MATLAB with a user-friendly graphical interface, and it consists of a collection of popular data adaptation algorithms that have been extensively applied to medical image analysis and computer vision. With DomainATM, researchers are able to facilitate fast feature-level and image-level adaptation, visualization and performance evaluation of different adaptation methods for medical data analysis. More importantly, the DomainATM enables the users to develop and test their own adaptation methods through scripting, greatly enhancing its utility and extensibility. An overview characteristic and usage of DomainATM is presented and illustrated with three example experiments, demonstrating its effectiveness, simplicity, and flexibility. The software, source code, and manual are available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源