论文标题

运动学镜头推理I:通过模拟分析表征形状噪声

Kinematic Lensing Inference I: Characterizing Shape Noise with Simulated Analyses

论文作者

S., Pranjal R., Krause, Elisabeth, Huang, Hung-Jin, Huff, Eric, Xu, Jiachuan, Eifler, Tim, Everett, Spencer

论文摘要

源星系的未知固有形状是弱重力镜头(WL)的最大不确定性之一。它导致所谓的形状噪声在$σ_ε^{\ mathrm {wl}}} \大约0.26 $的级别上,而感兴趣的剪切效应是订单百分比。运动学镜头(KL)是一种新技术,将光度法测量与分辨的光谱观测结合在一起,以推断固有的星系形状并直接估计引力剪切。本文提出了一个KL推理管道,该管道共同向前模型的星系成像和狭缝光谱以提取剪切信号。我们构建了一组逼真的模拟观察结果,并表明KL推理管道可以牢固地恢复输入剪切。为了量化KL的剪切测量不确定性,我们平均在随机定向的圆盘星系中平均形状噪声,并估计它为$σ_ε^{\ Mathrm {kl}} \大约0.022-0.041 $,取决于发射线信号到noise。与传统WL相比,这种数量级的改善使得与现有光谱仪器可行的KL观察计划可行。为此,我们表征了KL形状噪声对观测因素的依赖性,并讨论了对未来KL观察的调查策略的影响。特别是,我们发现,低倾斜星系的优先级质量光谱比最大化总数密度更有利。

The unknown intrinsic shape of source galaxies is one of the largest uncertainties of weak gravitational lensing (WL). It results in the so-called shape noise at the level of $σ_ε^{\mathrm{WL}} \approx 0.26$, whereas the shear effect of interest is of order percent. Kinematic lensing (KL) is a new technique that combines photometric shape measurements with resolved spectroscopic observations to infer the intrinsic galaxy shape and directly estimate the gravitational shear. This paper presents a KL inference pipeline that jointly forward-models galaxy imaging and slit spectroscopy to extract the shear signal. We build a set of realistic mock observations and show that the KL inference pipeline can robustly recover the input shear. To quantify the shear measurement uncertainty for KL, we average the shape noise over a population of randomly oriented disc galaxies and estimate it to be $σ_ε^{\mathrm{KL}}\approx 0.022-0.041$ depending on emission line signal-to-noise. This order of magnitude improvement over traditional WL makes a KL observational program feasible with existing spectroscopic instruments. To this end, we characterize the dependence of KL shape noise on observational factors and discuss implications for the survey strategy of future KL observations. In particular, we find that prioritizing quality spectra of low inclination galaxies is more advantageous than maximizing the overall number density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源