论文标题

化学的神经网络潜力:概念,应用和前景

Neural Network Potentials for Chemistry: Concepts, Applications and Prospects

论文作者

Käser, Silvan, Vazquez-Salazar, Luis Itza, Meuwly, Markus, Töpfer, Kai

论文摘要

人工神经网络(ANN)已经大量参与了计算化学领域频繁任务的方法和应用,例如势能表面(PES)的表示和光谱预测。这种观点概述了基于神经网络的全维势能表面,它们的体系结构,基本概念,它们的代表和应用化学系统的应用。讨论了PES构建的数据生成和培训程序的方法,并提供了通过转移学习进行错误评估和完善的手段。最新结果的选择说明了动态模拟中PES表示的准确性和系统大小限制的最新改进,但NN应用程序可以直接预测物理结果而无需动态模拟。目的是为计算化学中最新的NN方法提供概述,并指出当前在更大范围内增强NN方法的可靠性和适用性的挑战。

Artificial Neural Networks (ANN) are already heavily involved in methods and applications for frequent tasks in the field of computational chemistry such as representation of potential energy surfaces (PES) and spectroscopic predictions. This perspective provides an overview of the foundations of neural network-based full-dimensional potential energy surfaces, their architectures, underlying concepts, their representation and applications to chemical systems. Methods for data generation and training procedures for PES construction are discussed and means for error assessment and refinement through transfer learning are presented. A selection of recent results illustrates the latest improvements regarding accuracy of PES representations and system size limitations in dynamics simulations, but also NN application enabling direct prediction of physical results without dynamics simulations. The aim is to provide an overview for the current state-of-the-art NN approaches in computational chemistry and also to point out the current challenges in enhancing reliability and applicability of NN methods on larger scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源