论文标题

参数化量子电路的误差缓解措施优化:收敛分析

Error Mitigation-Aided Optimization of Parameterized Quantum Circuits: Convergence Analysis

论文作者

Jose, Sharu Theresa, Simeone, Osvaldo

论文摘要

变分量子算法(VQA)为通过嘈杂的中间尺度量子(NISQ)处理器获得量子优势提供了最有希望的途径。这样的系统利用经典优化来调整参数化量子电路(PQC)的参数。目标是最大程度地减少取决于从PQC获得的测量输出的成本函数。通常通过随机梯度下降(SGD)实现优化。在NISQ计算机上,由于缺陷和脱谐度引起的门噪声会通过引入偏差来影响随机梯度的估计。减轻量子误差(QEM)技术可以减少估计偏置而无需量子数量增加,但它们又导致梯度估计的方差增加。这项工作研究了量子门噪声对SGD收敛的影响,而VQA的基本实例(VQE)变分。主要目标是确定QEM可以提高VQE的SGD性能的条件。结果表明,量子栅极噪声在SGD的收敛误差(根据参考无噪声PQC评估)诱导了非零误差层,该噪声取决于噪声门的数量,噪声的强度,以及可观察到的可观察到的被观察和最小化的特征。相比之下,使用QEM,可以获得任何任意小的误差。此外,对于有或没有QEM的误差级别,QEM可以减少所需的迭代次数,但是只要量子噪声水平足够小,并且在每种SGD迭代中允许足够大的测量值。最大切割问题的数值示例证实了主要理论发现。

Variational quantum algorithms (VQAs) offer the most promising path to obtaining quantum advantages via noisy intermediate-scale quantum (NISQ) processors. Such systems leverage classical optimization to tune the parameters of a parameterized quantum circuit (PQC). The goal is minimizing a cost function that depends on measurement outputs obtained from the PQC. Optimization is typically implemented via stochastic gradient descent (SGD). On NISQ computers, gate noise due to imperfections and decoherence affects the stochastic gradient estimates by introducing a bias. Quantum error mitigation (QEM) techniques can reduce the estimation bias without requiring any increase in the number of qubits, but they in turn cause an increase in the variance of the gradient estimates. This work studies the impact of quantum gate noise on the convergence of SGD for the variational eigensolver (VQE), a fundamental instance of VQAs. The main goal is ascertaining conditions under which QEM can enhance the performance of SGD for VQEs. It is shown that quantum gate noise induces a non-zero error-floor on the convergence error of SGD (evaluated with respect to a reference noiseless PQC), which depends on the number of noisy gates, the strength of the noise, as well as the eigenspectrum of the observable being measured and minimized. In contrast, with QEM, any arbitrarily small error can be obtained. Furthermore, for error levels attainable with or without QEM, QEM can reduce the number of required iterations, but only as long as the quantum noise level is sufficiently small, and a sufficiently large number of measurements is allowed at each SGD iteration. Numerical examples for a max-cut problem corroborate the main theoretical findings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源