论文标题
谐波弱的马斯形式和时期II
Harmonic weak Maass forms and periods II
论文作者
论文摘要
在本文中,我们研究了负半整合体重的谐波玛刺形式的傅立叶系数。我们将这些系数的代数性与某些规范的Meromoromoromormormormormormormormormormormormormormormormormormormormormormormorigic模块化形式的阳性重量的代数相关联,均匀重量在Heegner除数处使用杆子。此外,我们在某些具有代数系数的某些Meromoromormormormormormormormormormormormormormormormormormormorormormormormorormormoromoromormormoromoromoromoromormormoromoromoromoromoromormormoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromoromor一下一下,给出了明确的公式。
In this paper we investigate the Fourier coefficients of harmonic Maass forms of negative half-integral weight. We relate the algebraicity of these coefficients to the algebraicity of the coefficients of certain canonical meromorphic modular forms of positive even weight with poles at Heegner divisors. Moreover, we give an explicit formula for the coefficients of harmonic Maass forms in terms of periods of certain meromorphic modular forms with algebraic coefficients.