论文标题

哈伯德$ u $ $ $ $ $ $ $

Hubbard $U$ through polaronic defect states

论文作者

Falletta, Stefano, Pasquarello, Alfredo

论文摘要

由于Anisimov及其同事的初步工作,Hubbard校正后的DFT+$ U $功能已通过将有效的库仑相互作用应用于特定的轨道来预测相关材料的性质。但是,尽管提出了多种方法,但哈伯德$ u $参数的确定仍在激烈的讨论中。在这里,我们根据使用极化缺陷状态来定义选择标准,以实施电子职业时总能量的分段线性。与分段线性杂交功能的结果良好一致,这些功能是在包括地层能量在内的电子和结构特性的。发现以这种方式确定的$ u $的值可以在考虑状态的变化时对极地能量学给出强大的描述。特别是,我们还谈到了极化的跳跃途径,发现$ U $的确定值导致准确的势能,而无需配置依赖性$ u $。有人强调,$ u $的选择应基于与应用$ u $的轨道直接相关的物理属性,而不是基于更多的全球属性,例如频段差距和频段宽度。为了进行比较,我们还通过良好的线性响应方案确定$ U $,从而发现$ U $的值明显不同,从而发现了不同的形成能。讨论了这些差异的可能起源。作为案例研究,我们考虑了bivo $ _4 $中的自我捕获的电子,MGO中的自被捕的孔,MGO中的Li捕获的孔以及$α$ -SIO $ _2 $中的Al捕获的孔。

Since the preliminary work of Anisimov and co-workers, the Hubbard corrected DFT+$U$ functional has been used for predicting properties of correlated materials by applying on-site effective Coulomb interactions to specific orbitals. However, the determination of the Hubbard $U$ parameter has remained under intense discussion despite the multitude of approaches proposed. Here, we define a selection criterion based on the use of polaronic defect states for the enforcement of the piecewise linearity of the total energy upon electron occupation. A good agreement with results from piecewise linear hybrid functionals is found for the electronic and structural properties of polarons, including the formation energies. The values of $U$ determined in this way are found to give a robust description of the polaron energetics upon variation of the considered state. In particular, we also address a polaron hopping pathway, finding that the determined value of $U$ leads to accurate energetics without requiring a configurational-dependent $U$. It is emphasized that the selection of $U$ should be based on physical properties directly associated with the orbitals to which $U$ is applied, rather than on more global properties such as band gaps and band widths. For comparison, we also determine $U$ through a well-established linear-response scheme finding noticeably different values of $U$ and consequently different formation energies. Possible origins of these discrepancies are discussed. As case studies, we consider the self-trapped electron in BiVO$_4$, the self-trapped hole in MgO, the Li-trapped hole in MgO, and the Al-trapped hole in $α$-SiO$_2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源