论文标题
用于扫描绘画预测的域自适应深度学习解决方案
A domain adaptive deep learning solution for scanpath prediction of paintings
论文作者
论文摘要
文化遗产的理解和保存对于社会来说是一个重要的问题,因为它代表了其身份的基本方面。绘画代表了文化遗产的重要组成部分,并且是不断研究的主题。但是,观众认为绘画与所谓的HVS(人类视觉系统)行为严格相关。本文重点介绍了一定数量绘画的视觉体验期间观众的眼动分析。在进一步的详细信息中,我们介绍了一种预测人类视觉关注的新方法,这影响了人类的几种认知功能,包括对场景的基本理解,然后将其扩展到绘画图像。提出的新建筑摄入图像并返回扫描路径,这是一系列积分,具有引起观众注意力的很有可能性。我们使用FCNN(完全卷积神经网络),在该网络中,我们利用了可区分的渠道选择和软弧度模块。我们还将可学习的高斯分布纳入网络瓶颈上,以模拟自然场景图像中的视觉注意过程偏见。此外,为了减少不同域之间的变化影响(即自然图像,绘画),我们敦促模型使用梯度反向分类器从其他域中学习无监督的一般特征。在准确性和效率方面,我们的模型获得的结果优于现有的最新结果。
Cultural heritage understanding and preservation is an important issue for society as it represents a fundamental aspect of its identity. Paintings represent a significant part of cultural heritage, and are the subject of study continuously. However, the way viewers perceive paintings is strictly related to the so-called HVS (Human Vision System) behaviour. This paper focuses on the eye-movement analysis of viewers during the visual experience of a certain number of paintings. In further details, we introduce a new approach to predicting human visual attention, which impacts several cognitive functions for humans, including the fundamental understanding of a scene, and then extend it to painting images. The proposed new architecture ingests images and returns scanpaths, a sequence of points featuring a high likelihood of catching viewers' attention. We use an FCNN (Fully Convolutional Neural Network), in which we exploit a differentiable channel-wise selection and Soft-Argmax modules. We also incorporate learnable Gaussian distributions onto the network bottleneck to simulate visual attention process bias in natural scene images. Furthermore, to reduce the effect of shifts between different domains (i.e. natural images, painting), we urge the model to learn unsupervised general features from other domains using a gradient reversal classifier. The results obtained by our model outperform existing state-of-the-art ones in terms of accuracy and efficiency.