论文标题

感谢您的Sylvester形式

Toric Sylvester forms

论文作者

Busé, Laurent, Checa, Carles

论文摘要

在本文中,我们研究了稀疏的均质多项式在投影式复曲面$ x $上产生的理想饱和的结构。作为我们的主要结果,我们在$ x $上的一定阳性假设下建立了双重性属性,并通过引入复曲面的Sylvester表格来明确。特别是,我们证明了折叠的sylvester形式的某些分级组成部分的产量基库,$ i^{\ text {sat}}/i $,其中$ i $表示由$ n+1 $ n $形式产生的理想,$ n $是$ x $和$ x $ and $ i^{s sat} $ irree a $ irree的$ x $的维度$ x $。然后,为了说明感谢您的光滑折叠品种消除理论的三种后果:(1)我们引入了一个新的消除矩阵家族,可用于通过线性代数方法,包括过度确定的多项式多项式系统来求解稀疏的多项式系统; (2)通过将复曲面的sylvester形式纳入与多项式系统相关的经典koszul复合物中,我们获得了稀疏结果的新表达式作为复合物的决定因素; (3)我们为计算两种形式的乘积的感谢您的曲折残基发出了新的公式。

In this paper, we investigate the structure of the saturation of ideals generated by sparse homogeneous polynomials over a projective toric variety $X$ with respect to the irrelevant ideal of $X$. As our main results, we establish a duality property and make it explicit by introducing toric Sylvester forms, under a certain positivity assumption on $X$. In particular, we prove that toric Sylvester forms yield bases of some graded components of $I^{\text{sat}}/I$, where $I$ denotes an ideal generated by $n+1$ generic forms, $n$ is the dimension of $X$ and $I^{\text{sat}}$ the saturation of $I$ with respect to the irrelevant ideal of the Cox ring of $X$. Then, to illustrate the relevance of toric Sylvester forms we provide three consequences in elimination theory over smooth toric varieties: (1) we introduce a new family of elimination matrices that can be used to solve sparse polynomial systems by means of linear algebra methods, including overdetermined polynomial systems; (2) by incorporating toric Sylvester forms to the classical Koszul complex associated to a polynomial system, we obtain new expressions of the sparse resultant as a determinant of a complex; (3) we explote a new formula for computing toric residues of the product of two forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源