论文标题

从示例对象轨迹和grasps学习灵巧的操纵

Learning Dexterous Manipulation from Exemplar Object Trajectories and Pre-Grasps

论文作者

Dasari, Sudeep, Gupta, Abhinav, Kumar, Vikash

论文摘要

通过各种物体学习多种灵活的操纵行为仍然是一个开放的巨大挑战。虽然政策学习方法为攻击此问题提供了强大的途径,但它们需要大量的每任务工程和算法调整。本文试图通过开发一种预先保证的灵巧操纵(PGDM)框架来逃避这些约束,从而产生多种灵活的操纵行为,而无需任何特定任务的推理或超级参数调谐。 PGD​​M的核心是一种众所周知的机器人构建体,即pregrasps(即为对象相互作用的手工姿势准备)。这种简单的原始性足以引起有效的探索策略,以获取复杂的灵巧操纵行为。为了详尽地验证这些主张,我们介绍了TCDM,这是根据多个对象和灵巧的操纵器定义的50个不同操纵任务的基准。 TCDM的任务是使用来自各种来源(动画师,人类行为等)的示例对象轨迹自动定义的,而无需执行任何按任务工程和/或监督。我们的实验验证了PGDM的勘探策略,该策略是由令人惊讶的简单成分(单个预抓姿势)引起的,与先前方法的性能相匹配,这些方法需要昂贵的每任务功能/奖励工程,专家监督和高参数调整。有关动画可视化,训练有素的策略和项目代码,请参阅:https://pregrasps.github.io/

Learning diverse dexterous manipulation behaviors with assorted objects remains an open grand challenge. While policy learning methods offer a powerful avenue to attack this problem, they require extensive per-task engineering and algorithmic tuning. This paper seeks to escape these constraints, by developing a Pre-Grasp informed Dexterous Manipulation (PGDM) framework that generates diverse dexterous manipulation behaviors, without any task-specific reasoning or hyper-parameter tuning. At the core of PGDM is a well known robotics construct, pre-grasps (i.e. the hand-pose preparing for object interaction). This simple primitive is enough to induce efficient exploration strategies for acquiring complex dexterous manipulation behaviors. To exhaustively verify these claims, we introduce TCDM, a benchmark of 50 diverse manipulation tasks defined over multiple objects and dexterous manipulators. Tasks for TCDM are defined automatically using exemplar object trajectories from various sources (animators, human behaviors, etc.), without any per-task engineering and/or supervision. Our experiments validate that PGDM's exploration strategy, induced by a surprisingly simple ingredient (single pre-grasp pose), matches the performance of prior methods, which require expensive per-task feature/reward engineering, expert supervision, and hyper-parameter tuning. For animated visualizations, trained policies, and project code, please refer to: https://pregrasps.github.io/

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源