论文标题

通过概括不折磨函数的原始偶对方法,改善了近似算法

Improved Approximation Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions

论文作者

Bansal, Ishan, Cheriyan, Joseph, Grout, Logan, Ibrahimpur, Sharat

论文摘要

我们解决了Williamson,Goemans,Vazirani和Mihail提出的长期开放问题,这些问题与通过原始偶尔方法(CombinatorICA 15(3):435-454,1995)进行了网络设计问题的近似算法有关。威廉姆森等人。证明了两个连通性增强问题的近似保证,其中可以通过所谓的无法折叠的功能指定连接性要求。他们指出:````扩展我们的算法来处理不可解决的功能仍然是一个具有挑战性的开放问题。不可折磨功能的关键特征是有一个最佳的双重解决方案,即层流。该属性表征了不可折磨的功能\ dots \一个更大的开放问题是进一步探索用于获得其他组合优化问题获得近似算法的原始偶尔方法的功能。'' 我们的主要结果证明了Williamson等人的原始二次算法。对于一类概括了不可折磨函数概念的功能,达到16的近似值。存在我们的方法可以处理的实例,其中最佳双重解决方案都没有层流支持。 我们提出了主要结果的三个应用。 (1)一种16个附属算法,用于增加图形$ g $的小型剪裁家族。 (2)$ 16 \ cdot {\ lceil k/u_ {min} \ rceil} $ - cap- $ k $ -ecss问题的近似算法,如下所示:给定的图形$ g =(v,e)$,带有ende c \ in \ mathbb in \ mathbb {q $ univity c $ c \ geq $ c $ c $ un \ Mathbb {z} _ {\ geq 0}^e $,找到边缘$ f \ subseteq e $的最低成本子集,使得$(v,f)$中的任何削减的容量至少为$ k $;我们使用$ u_ {min} $来表示$ e $中边缘的最低容量。 (3)$ O(1)$ - $(P,2)$ - 灵活的图形连接的模型的近似算法。

We address long-standing open questions raised by Williamson, Goemans, Vazirani and Mihail pertaining to the design of approximation algorithms for problems in network design via the primal-dual method (Combinatorica 15(3):435-454, 1995). Williamson et al. prove an approximation guarantee of two for connectivity augmentation problems where the connectivity requirements can be specified by so-called uncrossable functions. They state: ``Extending our algorithm to handle non-uncrossable functions remains a challenging open problem. The key feature of uncrossable functions is that there exists an optimal dual solution which is laminar. This property characterizes uncrossable functions\dots\ A larger open issue is to explore further the power of the primal-dual approach for obtaining approximation algorithms for other combinatorial optimization problems.'' Our main result proves that the primal-dual algorithm of Williamson et al. achieves an approximation ratio of 16 for a class of functions that generalizes the notion of an uncrossable function. There exist instances that can be handled by our methods where none of the optimal dual solutions has a laminar support. We present three applications of our main result. (1) A 16-approximation algorithm for augmenting a family of small cuts of a graph $G$. (2) A $16 \cdot {\lceil k/u_{min} \rceil}$-approximation algorithm for the Cap-$k$-ECSS problem which is as follows: Given an undirected graph $G = (V,E)$ with edge costs $c \in \mathbb{Q}_{\geq 0}^E$ and edge capacities $u \in \mathbb{Z}_{\geq 0}^E$, find a minimum-cost subset of the edges $F\subseteq E$ such that the capacity of any cut in $(V,F)$ is at least $k$; we use $u_{min}$ to denote the minimum capacity of an edge in $E$. (3) An $O(1)$-approximation algorithm for the model of $(p,2)$-Flexible Graph Connectivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源