论文标题

铁电列液晶中的巨大电动效应

Giant electroviscous effects in a ferroelectric nematic liquid crystal

论文作者

Kumar, M. Praveen, Karcz, Jakub, Kula, Przemyslaw, Karmakar, Smarajit, Dhara, Surajit

论文摘要

电动效果涉及由于外部电场而引起的流体粘度的变化。在这里,我们报告了有关铁电列液晶体中电动作用的实验研究。它是合成的,完成了一种新的合成途径,该途径比常规的途径更高。我们在不同温度下稳定剪切下测量电场依赖性粘度。在低场范围内,粘度($Δη=η(e)-η_0$)的增加与$ e^2 $成比例的粘度和相应的粘性系数($ f \ f \ of of10^{ - 9} $ m \ textSuperscript {2}/v \ textSuperscript {2}/v \ textsuperscript {2}列液晶体,有史以来最大的液体。在高电场下测得的明显粘度显示了幂律差异$η\ sim(t-t_c)^{ - 0.7 \ pm0.05} $,然后几乎低于N-N \ textSubscript {f}相位过渡。动力学缩放近似中的实验结果表明,随着N-N \ TextSubscript {F}相变接近,极性电场下极性结构域的快速生长。此处展示的巨大电动效应对于新兴应用和了解铁电列液晶中的醒目的电解力学效应很重要。

The electroviscous effect deals with the change in the viscosity of fluids due to an external electric field. Here, we report experimental studies on the electroviscous effects in a ferroelectric nematic liquid crystal. It was synthesised accomplishing a new synthetic route which provides higher yield than conventional one. We measure electric field-dependent viscosity under a steady shear at different temperatures. In the low field range, the increase in viscosity ($Δη=η(E)-η_0$) is proportional to $E^2$ and the corresponding viscoelectric coefficient ($f\approx10^{-9}$m\textsuperscript{2}/V\textsuperscript{2}) of the ferroelectric nematic is 2 orders of magnitude larger than the apolar nematic liquid crystals and largest ever measured for a fluid. The apparent viscosity measured under a high electric field shows a power-law divergence $η\sim(T-T_c)^{-0.7\pm0.05}$, followed by nearly an order of magnitude drop below the N-N\textsubscript{F} phase transition. Experimental results within the dynamical scaling approximation demonstrate rapid growth of polar domains under a strong electric field as the N-N\textsubscript{F} phase transition is approached. The gigantic electroviscous effects demonstrated here are important for emerging applications and understanding striking electrohydromechanical effects in ferroelectric nematic liquid crystals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源