论文标题

单调矩阵函数的随机低级别近似

Randomized low-rank approximation of monotone matrix functions

论文作者

Persson, David, Kressner, Daniel

论文摘要

这项工作涉及计算矩阵函数的低级别近似值$ f(a)$,用于大型对称的积极半明确矩阵$ a $,这是在统计学习和反向问题中出现的任务。流行的随机方法的应用,例如随机单数值分解或NyStröm近似,将其应用于$ f(a)$,需要将$ f(a)$与几个随机向量相乘。这种方法的一个重要缺点是,具有$ f(a)$的矩阵向量产品比具有$ a $的矩阵向量产品贵得多,即使仅通过大约通过via进行,例如lanczos方法。在这项工作中,我们介绍和分析FunnyStröm,这是一种简单且廉价的方法,它直接从NyStröm$ a $的NyStröm近似值中构建$ f(a)$的低级别近似值,完全绕开了$ f(a)$的矩阵矢量产品的需求。每当$ f $单调并满足$ f(0)= 0 $时,使用FunnyStröm是明智的。在更强的假设是,$ f $是运算符单调,其中包括矩阵平方根$ a^{1/2} $和矩阵对数$ \ log(i+a)$,我们得出了Frobenius,核和操作员规范的错误概率范围。这些边界证实了数值观察结果,即FunnyStröm倾向于返回近似值,该近似与$ f(a)$的最佳低级别近似相比。此外,与现有方法相比,FunnyStröm所需的矩阵向量产品具有$ a $的矩阵向量产品,以获得$ f(a)$的低级别近似值,而无需牺牲准确性或可靠性。当估计与$ f(a)$相关的数量时,我们的方法也很感兴趣,例如$ f(a)$的跟踪或对角线条目。特别是,我们建议和分析FunnyStröm++,这是FunnyStröm与最近开发的Hutch ++方法的组合,用于痕量估计。

This work is concerned with computing low-rank approximations of a matrix function $f(A)$ for a large symmetric positive semi-definite matrix $A$, a task that arises in, e.g., statistical learning and inverse problems. The application of popular randomized methods, such as the randomized singular value decomposition or the Nyström approximation, to $f(A)$ requires multiplying $f(A)$ with a few random vectors. A significant disadvantage of such an approach, matrix-vector products with $f(A)$ are considerably more expensive than matrix-vector products with $A$, even when carried out only approximately via, e.g., the Lanczos method. In this work, we present and analyze funNyström, a simple and inexpensive method that constructs a low-rank approximation of $f(A)$ directly from a Nyström approximation of $A$, completely bypassing the need for matrix-vector products with $f(A)$. It is sensible to use funNyström whenever $f$ is monotone and satisfies $f(0) = 0$. Under the stronger assumption that $f$ is operator monotone, which includes the matrix square root $A^{1/2}$ and the matrix logarithm $\log(I+A)$, we derive probabilistic bounds for the error in the Frobenius, nuclear, and operator norms. These bounds confirm the numerical observation that funNyström tends to return an approximation that compares well with the best low-rank approximation of $f(A)$. Furthermore, compared to existing methods, funNyström requires significantly fewer matrix-vector products with $A$ to obtain a low-rank approximation of $f(A)$, without sacrificing accuracy or reliability. Our method is also of interest when estimating quantities associated with $f(A)$, such as the trace or the diagonal entries of $f(A)$. In particular, we propose and analyze funNyström++, a combination of funNyström with the recently developed Hutch++ method for trace estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源