论文标题

在立方体纳米晶超晶格中增强了鲁棒性和尺寸跨加速度的尺寸

Enhanced robustness and dimensional crossover of superradiance in cuboidal nanocrystal superlattices

论文作者

Ghonge, Sushrut, Engel, David, Mattiotti, Francesco, Celardo, G. Luca, Kuno, Masaru, Jankó, Boldizsár

论文摘要

在各种物理系统中,已经预测并观察到来自多个发射器的相干辐射的合作发射,最近一次是在CSPBBR $ _3 $ nanocrystal超级晶格中。超级发射是相干的,并且在时间尺度上比孤立的纳米晶体发射更快。理论预测合作排放的速度更快,最高纳米晶($ n $)。然而,由于纳米晶体大小的变化和热脱碳的存在,由于存在能量障碍,超高受到了强烈的抑制。在这里,我们分析了不同维度(一,二维和三维)具有可变纳米晶倍比率的超级峰值的超级级别。我们预测,在三维(3D)超晶格中,鲁棒性的鲁棒性具有15倍的增强,由二维(3D)超级晶格组成,该晶格由二维的晶格形成,而不是立方体形状的纳米晶体。来自小$(N \ Lessim 10^3)$二维(2D)超级晶格的超级奏效的静态障碍的稳健性高10倍,最多是具有相同$ n $的3D超级晶格。随着$ n $的数量的增加,超级稳健性的跨界次数从2D到3D超级晶格。对于大的$ n \(> 10^3)$,3D超级晶格的鲁棒性随$ n $而增加,显示出对混乱的合作鲁棒性。如果纳米晶体尺寸的波动可以保持很小,这也打开了即使在室温下在室温下观察超高的可能性。

Cooperative emission of coherent radiation from multiple emitters (known as superradiance) has been predicted and observed in various physical systems, most recently in CsPbBr$_3$ nanocrystal superlattices. Superradiant emission is coherent and occurs on timescales faster than the emission from isolated nanocrystals. Theory predicts cooperative emission being faster by a factor of up to the number of nanocrystals ($N$). However, superradiance is strongly suppressed due to the presence of energetic disorder, stemming from nanocrystal size variations and thermal decoherence. Here, we analyze superradiance from superlattices of different dimensionalities (one-, two- and three-dimensional) with variable nanocrystal aspect ratios. We predict as much as a 15-fold enhancement in robustness against realistic values of energetic disorder in three-dimensional (3D) superlattices composed of cuboid-shaped, as opposed to cube-shaped, nanocrystals. Superradiance from small $(N\lesssim 10^3)$ two-dimensional (2D) superlattices is up to ten times more robust to static disorder and up to twice as robust to thermal decoherence than 3D superlattices with the same $N$. As the number of $N$ increases, a crossover in the robustness of superradiance occurs from 2D to 3D superlattices. For large $N\ (> 10^3)$, the robustness in 3D superlattices increases with $N$, showing cooperative robustness to disorder. This opens the possibility of observing superradiance even at room temperature in large 3D superlattices, if nanocrystal size fluctuations can be kept small.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源