论文标题

尖峰神经网络的空间通道 - 周期性关注

A Spatial-channel-temporal-fused Attention for Spiking Neural Networks

论文作者

Cai, Wuque, Sun, Hongze, Liu, Rui, Cui, Yan, Wang, Jun, Xia, Yang, Yao, Dezhong, Guo, Daqing

论文摘要

尖峰神经网络(SNNS)模仿大脑计算策略,并在时空信息处理中表现出很大的功能。作为人类感知的重要因素,视觉关注是指选择生物视觉系统中的显着区域的动态过程。尽管视觉关注机制在计算机视觉应用中取得了巨大成功,但很少将它们引入SNN中。受到预测注意重新映射的实验观察的启发,我们提出了一种新的空间通道 - 周期性关注(SCTFA)模块,该模块可以指导SNN通过利用本研究中积累的历史空间通道信息来有效地捕获基本的目标区域。通过在三个事件流数据集(DVS手势,SL-Animals-DVS和MNIST-DVS)上进行系统评估,我们证明了具有SCTFA模块(SCTFA-SNN)的SNN不仅显着超过了基线SNN(BL-SNN)和其他两个SNN模型,还具有与Demenerated Castion Modective Modective-Accie acy Achieves,还超过了基线SNN(BL-SNN)。此外,我们的详细分析表明,当面对不完整的数据时,提出的SCTFA-SNN模型对噪声和稳定性具有强大的稳健性,同时保持可接受的复杂性和效率。总体而言,这些发现表明,结合适当的大脑认知机制可能会提供一种有前途的方法来提高SNN的能力。

Spiking neural networks (SNNs) mimic brain computational strategies, and exhibit substantial capabilities in spatiotemporal information processing. As an essential factor for human perception, visual attention refers to the dynamic process for selecting salient regions in biological vision systems. Although visual attention mechanisms have achieved great success in computer vision applications, they are rarely introduced into SNNs. Inspired by experimental observations on predictive attentional remapping, we propose a new spatial-channel-temporal-fused attention (SCTFA) module that can guide SNNs to efficiently capture underlying target regions by utilizing accumulated historical spatial-channel information in the present study. Through a systematic evaluation on three event stream datasets (DVS Gesture, SL-Animals-DVS and MNIST-DVS), we demonstrate that the SNN with the SCTFA module (SCTFA-SNN) not only significantly outperforms the baseline SNN (BL-SNN) and two other SNN models with degenerated attention modules, but also achieves competitive accuracy with existing state-of-the-art methods. Additionally, our detailed analysis shows that the proposed SCTFA-SNN model has strong robustness to noise and outstanding stability when faced with incomplete data, while maintaining acceptable complexity and efficiency. Overall, these findings indicate that incorporating appropriate cognitive mechanisms of the brain may provide a promising approach to elevate the capabilities of SNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源