论文标题
通过与Top-Quark $ \ overline {\ rm MS} $ MS} $ smos $ {\ Overline M} _t({\ edmepline m} _tline M} _t)$ overtlline {{\ edmecylline m} _t)$确切确定Top-Quark On-Shell Mass $ M_T $。
Precise determination of the top-quark on-shell mass $M_t$ via its scale-invariant perturbative relation to the top-quark $\overline{\rm MS}$ mass ${\overline m}_t({\overline m}_t)$
论文作者
论文摘要
已经表明,最大保素(PMC)的原理提供了一种系统的方法来解决常规的重新归一化方案和规模歧义。使用PMC的物理可观察物进行的尺度固定预测与重新归一化方案的选择无关 - 重新归一化组不变性的关键要求。在本文中,我们基于重新归一化的方程得出了新的退化关系,该方程分别涉及通常的$β$功能和夸克质量异常尺寸$γ_m$ $ unction。这些新的退化关系导致了改进的PMC尺度设定过程,因此可以同时固定强耦合常数和$ \ overline {\ rm MS} $的正确幅度。通过使用改进的PMC尺度设定过程,可以系统地消除$ \ Overline {\ rm MS} $的重新归一化量表依赖性。因此,可以在没有常规的翻新规模含糊不清的情况下确定顶级Quark On-shell(或$ \ overline {\ rm MS} $)质量。取上顶Quark $ \ OVILLINE {\ rm MS} $ MASS $ {\ OVILLINE M} _T({\ overline M} _T)= 162.5^{+2.1} _ { - 1.5} $ GEV作为输入在这里,不确定性是将误差与$Δα_S(M_Z)$的错误以及来自Padé近似方法预测的未计算的五环项所引起的近似不确定性。
It has been shown that the principle of maximum conformality (PMC) provides a systematic way to solve conventional renormalization scheme and scale ambiguities. The scale-fixed predictions for physical observables using the PMC are independent of the choice of renormalization scheme -- a key requirement of renormalization group invariance. In the paper, we derive new degeneracy relations based on the renormalization group equations that involve both the usual $β$-function and the quark mass anomalous dimension $γ_m$-function, respectively. These new degeneracy relations lead to an improved PMC scale-setting procedures, such that the correct magnitudes of the strong coupling constant and the $\overline{\rm MS}$-running quark mass can be fixed simultaneously. By using the improved PMC scale-setting procedures, the renormalization scale dependence of the $\overline{\rm MS}$-on-shell quark mass relation can be eliminated systematically. Consequently, the top-quark on-shell (or $\overline{\rm MS}$) mass can be determined without conventional renormalization scale ambiguity. Taking the top-quark $\overline{\rm MS}$ mass ${\overline m}_t({\overline m}_t)=162.5^{+2.1}_{-1.5}$ GeV as the input, we obtain $M_t\simeq 172.41^{+2.21}_{-1.57}$ GeV. Here the uncertainties are combined errors with those also from $Δα_s(M_Z)$ and the approximate uncertainty stemming from the uncalculated five-loop terms predicted through the Padé approximation approach.