论文标题

Para-Bannai-Ito多项式

Para-Bannai-Ito Polynomials

论文作者

Pelletier, Jonathan, Vinet, Luc, Zhedanov, Alexei

论文摘要

在班奈伊特双晶体(均匀Quadri-lattice)上的新双光谱多项式正交是通过对未截断的班奈伊特和互补的班奈 - ito多项式的非常规截断获得的。提供了所得para-bannai-Ito多项式的完整表征,包括三个项复发关系,dunkl-差异方程,超几形序列中的显式表达和正交性关系。它们也被推导为$ q \至-1 $限制的$ q $ -para-racah多项式。还建立了与双$ -1 $ -1 $ hahn多项式的连接。

New bispectral polynomials orthogonal on a Bannai-Ito bi-lattice (uniform quadri-lattice) are obtained from an unconventional truncation of the untruncated Bannai-Ito and complementary Bannai-Ito polynomials. A complete characterization of the resulting para-Bannai-Ito polynomials is provided, including a three term recurrence relation, a Dunkl-difference equation, an explicit expression in terms of hypergeometric series and an orthogonality relation. They are also derived as a $q\to -1$ limit of the $q$-para-Racah polynomials. A connection to the dual $-1$ Hahn polynomials is also established.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源