论文标题

3D语义映射的卷积贝叶斯内核推断

Convolutional Bayesian Kernel Inference for 3D Semantic Mapping

论文作者

Wilson, Joey, Fu, Yuewei, Zhang, Arthur, Song, Jingyu, Capodieci, Andrew, Jayakumar, Paramsothy, Barton, Kira, Ghaffari, Maani

论文摘要

机器人感知目前处于在有效的潜在空间和经典方法中运行的现代方法之间的跨道,这些方法是数学上建立的,并提供了可解释的,可信赖的结果。在本文中,我们引入了卷积的贝叶斯内核推理(Convbki)层,该层学会在深度可分离的卷积层中执行明显的贝叶斯推断,以最大程度地提高效率,同时保持可靠性。我们将层应用于实时3D语义映射的任务,在该任务中,我们学习了激光雷达传感器信息的语义几何概率分布,并将语义预测纳入全局映射。我们根据KITTI数据集的最新语义映射算法评估我们的网络,并通过可比的语义标签推理结果表明了延迟的提高。

Robotic perception is currently at a cross-roads between modern methods, which operate in an efficient latent space, and classical methods, which are mathematically founded and provide interpretable, trustworthy results. In this paper, we introduce a Convolutional Bayesian Kernel Inference (ConvBKI) layer which learns to perform explicit Bayesian inference within a depthwise separable convolution layer to maximize efficency while maintaining reliability simultaneously. We apply our layer to the task of real-time 3D semantic mapping, where we learn semantic-geometric probability distributions for LiDAR sensor information and incorporate semantic predictions into a global map. We evaluate our network against state-of-the-art semantic mapping algorithms on the KITTI data set, demonstrating improved latency with comparable semantic label inference results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源