论文标题

在纯正学位数字字段的形状上

On the shapes of pure prime degree number fields

论文作者

Holmes, Erik

论文摘要

对于$ p $ prime和$ \ ell = \ frac {p-1} {2} $,我们表明,纯质学位数字字段的形状位于形状空间的两个$ \ ell $ - 维子空间之一,以及两个子空间中的哪个是由$ p $ ramifies wildly willly of lightilly所决定的。当通过绝对判别剂订购字段时,我们表明这些形状在这些子空间上是正则化的。我们还表明,这种形状是纯正学位领域家族中完全不变的。这扩展了[HAR17]中的Harron的结果,后者在纯立方数字字段中研究了形状。此外,我们将纯Prime Number字段的语句转换为有关Frobenius编号字段的语句,$ f_p = C_P \ rtimes C_ {P-1} $,带有固定的分辨率字段。具体来说,我们表明这项研究等于对具有固定解析字段$ \ Mathbb {q}(ζ_P)$的$ f_p $ -Number字段的研究。

For $p$ prime and $\ell = \frac{p-1}{2}$, we show that the shapes of pure prime degree number fields lie on one of two $\ell$-dimensional subspaces of the space of shapes, and which of the two subspaces is dictated by whether or not $p$ ramifies wildly. When the fields are ordered by absolute discriminant we show that the shapes are equidistributed, in a regularized sense, on these subspaces. We also show that the shape is a complete invariant within the family of pure prime degree fields. This extends the results of Harron, in [Har17], who studied shapes in the case of pure cubic number fields. Furthermore we translate the statements of pure prime degree number fields to statements about Frobenius number fields, $F_p = C_p\rtimes C_{p-1}$, with a fixed resolvent field. Specifically we show that this study is equivalent to the study of $F_p$-number fields with fixed resolvent field $\mathbb{Q}(ζ_p)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源