论文标题

共形重力:牛顿的常数不是通用

Conformal gravity: Newton's constant is not universal

论文作者

Nesbet, R. K.

论文摘要

在许多独立的实验中,牛顿的重力常数$ g $已高精度。由于目前尚未解决的原因,指示来自不同精心设计和彻底分析的实验的值的差异大于估计误差的总和。最近已经显示,需要爱因斯坦一般相对论和HIGGS标量场模型来满足共形的对称性(局部Weyl缩放协方差)引入了引力效应,这些效应解释了异常的银河旋转,目前加速了Hubble的膨胀,并且无需调动深色的黑乳阳离子,而无需调动深色的halos。这意味着中子和质子的不同值$ g_n $和$ g_p $,但保留了通过给定重力场加速的测试对象的爱因斯坦等效原理。同位素质量缺陷$μ$ $ $ $确定独立$ g_m $。因此,每个核同位素的G都不同。此处使用了一些最近的测量结果来估计$ g_n = 6.60216 $,$ g_p = 6.38926 $,$ g_m = -11.60684 $ in Units $ 10^{ - 11} m^3kg^{ - 1} s^{ - 2} $。

Newton's gravitational constant $G$ has been measured to high accuracy in a number of independent experiments. For currently unresolved reasons, indicated values from different well-designed and thoroughly analyzed experiments differ by more than the sum of estimated errors. It has recently been shown that requiring both Einstein general relativity and the Higgs scalar field model to satisfy conformal symmetry (local Weyl scaling covariance) introduces gravitational effects that explain anomalous galactic rotation, currently accelerating Hubble expansion, and dark galactic halos, without invoking dark matter. This implies different values $G_n$ and $G_p$ for neutron and proton, respectively, but retains the Einstein equivalence principle for test objects accelerated by a given gravitational field. Isotopic mass defect $μ$ per nucleon determines independent $G_m$. Thus G differs for each nuclear isotope. Several recent measurements are used here to estimate $G_n=6.60216$, $G_p=6.38926$, and $G_m=-11.60684$ in units $10^{-11}m^3kg^{-1}s^{-2}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源