论文标题
一阶自旋流动力框架的稳定性研究
Stability studies of first order spin-hydrodynamic frameworks
论文作者
论文摘要
我们研究一阶耗散自旋流动力框架的稳定性。我们考虑了两个不同的一阶耗散自旋流动力框架。第一个认为在流体动力梯度膨胀中,认为旋转化学电位($ω^{αβ} $)是第一阶($ \ Mathcal {O}(\ partial)$)。自旋化学电位的流体动力梯度有序是在自旋流体动力学框架内的一个有争议的问题。因此,作为第二选择,我们还考虑了带有$ω^{αβ} \ sim \ Mathcal {O}(1)$的自旋流体动力方程。我们发现,对于两个框架,在线性扰动的层面上,某些旋转模式可能不稳定。为了删除这些通用不稳定性,我们考虑了Frenkel条件。我们认为,Frenkel条件在两种情况下都有助于摆脱不稳定的解决方案,但对于$ω^{μν} \ sim \ Mathcal {O}(\ partial)$的情况,有物理缺陷。
We study the stability of first-order dissipative spin-hydrodynamic frameworks. We considered two different first-order dissipative spin-hydrodynamic frameworks. The first one considers the spin chemical potential ($ω^{αβ}$) to be first order ($\mathcal{O}(\partial)$) in the hydrodynamic gradient expansion. The hydrodynamic gradient ordering of the spin chemical potential is a debatable issue within the frameworks of spin hydrodynamics. Therefore as a second choice, we also consider the spin hydrodynamic equations with $ω^{αβ}\sim\mathcal{O}(1)$. We find that for both frameworks, at the level of linear perturbations some spin modes can be unstable. To remove these generic instabilities we consider the Frenkel condition. We argue that Frenkel condition helps get rid of the unstable solutions in both cases, but with a physical drawback for the case where $ω^{μν}\sim\mathcal{O}(\partial)$.