论文标题
面部表达识别的不确定性意识标签分布学习
Uncertainty-aware Label Distribution Learning for Facial Expression Recognition
论文作者
论文摘要
尽管在过去几年中取得了重大进展,但歧义仍然是面部表情识别(FER)的关键挑战。它可能导致嘈杂和不一致的注释,这阻碍了在现实世界中深度学习模型的性能。在本文中,我们提出了一种新的不确定性标签分布学习方法,以提高深层模型的鲁棒性,以防止不确定性和歧义。我们利用价值空间中的邻里信息来适应为训练样本构建情绪分布。我们还考虑提供的标签将其纳入标签分布时的不确定性。我们的方法可以轻松地集成到深层网络中,以获得更多的培训监督并提高识别准确性。在各种嘈杂和模棱两可的环境下,在几个数据集上进行了密集的实验表明,我们的方法取得了竞争成果,并且表现优于最近的最新方法。我们的代码和模型可在https://github.com/minhnhatvt/label-distribution-learning-fer-tf上找到。
Despite significant progress over the past few years, ambiguity is still a key challenge in Facial Expression Recognition (FER). It can lead to noisy and inconsistent annotation, which hinders the performance of deep learning models in real-world scenarios. In this paper, we propose a new uncertainty-aware label distribution learning method to improve the robustness of deep models against uncertainty and ambiguity. We leverage neighborhood information in the valence-arousal space to adaptively construct emotion distributions for training samples. We also consider the uncertainty of provided labels when incorporating them into the label distributions. Our method can be easily integrated into a deep network to obtain more training supervision and improve recognition accuracy. Intensive experiments on several datasets under various noisy and ambiguous settings show that our method achieves competitive results and outperforms recent state-of-the-art approaches. Our code and models are available at https://github.com/minhnhatvt/label-distribution-learning-fer-tf.