论文标题

FNEVR:脸部动画的神经音量渲染

FNeVR: Neural Volume Rendering for Face Animation

论文作者

Zeng, Bohan, Liu, Boyu, Li, Hong, Liu, Xuhui, Liu, Jianzhuang, Chen, Dapeng, Peng, Wei, Zhang, Baochang

论文摘要

Face Animation是计算机视觉中最热门的主题之一,在生成模型的帮助下取得了令人鼓舞的性能。但是,由于复杂的运动变形和复杂的面部细节建模,生成保存和光真实图像的身份和光真实图像仍然是一个关键的挑战。为了解决这些问题,我们提出了一个面部神经量渲染(FNEVR)网络,以充分探索在统一框架中2D运动翘曲和3D体积渲染的潜力。在FNEVR中,我们设计了一个3D面积渲染(FVR)模块,以增强图像渲染的面部细节。具体而言,我们首先使用精心设计的体系结构提取3D信息,然后引入一个正交自适应射线采样模块以进行有效的渲染。我们还设计了一个轻巧的姿势编辑器,使FNEVR能够以简单而有效的方式编辑面部姿势。广泛的实验表明,我们的FNEVR在广泛使用的说话头标准上获得了最佳的总体质量和性能。

Face animation, one of the hottest topics in computer vision, has achieved a promising performance with the help of generative models. However, it remains a critical challenge to generate identity preserving and photo-realistic images due to the sophisticated motion deformation and complex facial detail modeling. To address these problems, we propose a Face Neural Volume Rendering (FNeVR) network to fully explore the potential of 2D motion warping and 3D volume rendering in a unified framework. In FNeVR, we design a 3D Face Volume Rendering (FVR) module to enhance the facial details for image rendering. Specifically, we first extract 3D information with a well-designed architecture, and then introduce an orthogonal adaptive ray-sampling module for efficient rendering. We also design a lightweight pose editor, enabling FNeVR to edit the facial pose in a simple yet effective way. Extensive experiments show that our FNeVR obtains the best overall quality and performance on widely used talking-head benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源