论文标题
colcul效果de la cohomogie des faisceaux构造sur le le s eterétaled'une courbe
Calcul effectif de la cohomologie des faisceaux constructibles sur le site étale d'une courbe
论文作者
论文摘要
该论文涉及在代数封闭的范围内的典型位点上阿贝尔群体的算法表示,以及其共同体的显式计算。我们描述了在最坏的淋巴结奇点上曲线上这样的三种表示的表示,以及在这些吊带上执行各种操作的算法(晶状体和旋转,回调和推动的HOM和Tensor产品)的算法。我们提出了一种算法计算在平滑或节点曲线上局部恒定构造的捆的算法,这又使我们能够对函数$ \ mathrm {r}γ(x, - - - - \ colon \ colon \ colon \ mathrm {d}^d}^b_c(x,x,z,z,z} { \ Mathrm {D}^B_C(\ Mathbb {Z}/N \ Mathbb {Z})$。此描述在方案$ x $和给定的可构造式滑轮的复合体中起作用。特别是,如果$ x $和支票$ \ mathcal {f} $是通过从子场更改获得的,则我们描述了复杂$ \ mathrm {r}γ(x,x,\ mathcal {f})上的galois动作。我们对算法计算$ \ mathrm {r}γ(x,x,\ mathcal {f})$执行的操作数量进行精确界限。我们还对局部恒定构造的滑轮在光滑的弹性曲线上的共同体中进行了明确描述。最后,我们展示了如何使用这些算法来计算在射影线上平滑的表面上的恒定捆的共同体学组。
This thesis deals with the algorithmic representation of constructible sheaves of abelian groups on the étale site of a variety over an algebraically closed field, as well as the explicit computation of their cohomology. We describe three representations of such sheaves on curves with at worst nodal singularities, as well as algorithms performing various operations (kernels and cokernels of morphisms, pullback and pushforward, internal Hom and tensor product) on these sheaves. We present an algorithm computing the cohomology complex of a locally constant constructible sheaf on a smooth or nodal curve, which in turn allows us to give an explicit description of the functor $\mathrm{R}Γ(X,-)\colon \mathrm{D}^b_c(X,\mathbb{Z}/n\mathbb{Z})\to \mathrm{D}^b_c(\mathbb{Z}/n\mathbb{Z})$. This description is functorial in the scheme $X$ and the given complex of constructible sheaves. In particular, if $X$ and the sheaf $\mathcal{F}$ are obtained by base change from a subfield, we describe the Galois action on the complex $\mathrm{R}Γ(X,\mathcal{F})$. We give precise bounds on the number of operations performed by the algorithm computing $\mathrm{R}Γ(X,\mathcal{F})$. We also give an explicit description of cup-products in the cohomology of locally constant constructible sheaves over smooth projective curves. Finally, we show how to use these algorithms in order to compute the cohomology groups of a constant sheaf on a smooth surface fibered over the projective line.