论文标题
观察来自超电原子实验图像的深神经网络的拓扑相变
Observing a topological phase transition with deep neural networks from experimental images of ultracold atoms
论文作者
论文摘要
尽管分类的拓扑量子相吸引了极大的兴趣,但缺乏局部秩序参数通常使检测从实验数据中的拓扑相变的挑战。机器学习算法的最新进展使物理学家能够以前所未有的高灵敏度分析实验数据,并在存在不可避免的噪声的情况下识别量子阶段。在这里,我们报告了使用深层卷积神经网络对拓扑相变的成功识别,该网络在旋转轨道耦合的费米子的对称性保护拓扑系统中获得了低信噪比(SNR)实验数据。我们将训练有素的网络应用于看不见的数据以绘制整个相图,这预测了两个拓扑相变的位置,这些位置与通过在较高SNR数据上使用常规方法获得的结果一致。通过可视化卷积层的滤波器和跨跨趋化后结果,我们进一步发现,CNN使用相同的信息将系统中的分类作为常规分析,即旋转不平衡,但具有有关SNR的优势。我们的工作突出了机器学习技术在各种量子系统中使用的潜力。
Although classifying topological quantum phases have attracted great interests, the absence of local order parameter generically makes it challenging to detect a topological phase transition from experimental data. Recent advances in machine learning algorithms enable physicists to analyze experimental data with unprecedented high sensitivities, and identify quantum phases even in the presence of unavoidable noises. Here, we report a successful identification of topological phase transitions using a deep convolutional neural network trained with low signal-to-noise-ratio (SNR) experimental data obtained in a symmetry-protected topological system of spin-orbit-coupled fermions. We apply the trained network to unseen data to map out a whole phase diagram, which predicts the positions of the two topological phase transitions that are consistent with the results obtained by using the conventional method on higher SNR data. By visualizing the filters and post-convolutional results of the convolutional layer, we further find that the CNN uses the same information to make the classification in the system as the conventional analysis, namely spin imbalance, but with an advantage concerning SNR. Our work highlights the potential of machine learning techniques to be used in various quantum systems.