论文标题
粘合数据以分解单体和顶点indshemes
Gluing data for factorization monoids and vertex ind-schemes
论文作者
论文摘要
我们对仿射线上的分解代数进行了明确的描述,并根据由其相应的OPE代数确定的胶合数据构造它们。然后,我们将这种构造概括为分解型单体,并根据非线性版本的OPE代数来获取它们的描述,我们称之为OPE MONOIDS。在翻译等效的设置中,这种方法使我们能够定义顶点式框架,我们将其解释为Lie群体概念的共形类似物,因为我们表明它们的线性化产生了顶点代数,并且它们的Zariski切线空间是Lie Soldormal Algebras。
We give an explicit description of factorization algebras over the affine line, constructing them from the gluing data determined by its corresponding OPE algebra. We then generalize this construction to factorization monoids, obtaining a description of them in terms of a non-linear version of OPE algebras which we call OPE monoids. In the translation equivariant setting this approach allows us to define vertex ind-schemes, which we interpret as a conformal analogue of the notion of Lie group, since we show that their linearizations yield vertex algebras and that their Zariski tangent spaces are Lie conformal algebras.