论文标题
一个人永远不会独自行走:垂直人群对强烈重力镜片中次荷兰测量的影响
One never walks alone: the effect of the perturber population on subhalo measurements in strong gravitational lenses
论文作者
论文摘要
迄今为止,强力重力透镜图像中扩展弧的分析通过测量一个或两个单独的Subhalos的参数来限制了暗物质的性质。但是,由于这种分析依赖于基于可能性的方法,例如马尔可夫链蒙特卡洛或嵌套抽样,因此它们需要为镜头模型的现实主义进行各种妥协,以忽略计算障碍性,例如忽略众多其他subhalos和众多的sibhalos和line of-line of-line of-line of-line tight halos在系统中,假设有一个特定的形式,则需要一种噪声和噪音。在这里,我们表明,一种基于模拟的推理方法称为截断的边际神经比估计(TMNRE),可以通过训练神经网络直接从镜头图像计算subhalo参数的边际后代来放松这些要求。通过在模拟数据上执行一组推理任务,我们验证了TMNRE的准确性,并表明它可以计算出在数百个子结构的种群上边缘化的子呼吸器参数,以及镜头和来源的不确定性。我们还发现\ gls*{MLP}混音器网络在此类任务方面的效果要比其他镜头分析中探讨的卷积体系结构要好得多。此外,我们表明,由于\ gls*{tmnre}学习了一个后函数,因此可以实现直接的统计检查,而基于可能性的方法将非常昂贵。我们的结果表明,TMNRE非常适合分析复杂的镜头数据,并且在通过该技术测量单个暗物质亚结构的性质时,必须包括完整的副呼吸和视线光环群体。
Analyses of extended arcs in strong gravitational lensing images to date have constrained the properties of dark matter by measuring the parameters of one or two individual subhalos. However, since such analyses are reliant on likelihood-based methods like Markov-chain Monte Carlo or nested sampling, they require various compromises to the realism of lensing models for the sake of computational tractability, such as ignoring the numerous other subhalos and line-of-sight halos in the system, assuming a particular form for the source model and requiring the noise to have a known likelihood function. Here we show that a simulation-based inference method calledTruncated Marginal Neural Ratio Estimation (TMNRE) makes it possible to relax these requirements by training neural networks to directly compute marginal posteriors for subhalo parameters from lensing images. By performing a set of inference tasks on mock data, we verify the accuracy of TMNRE and show it can compute posteriors for subhalo parameters marginalized over populations of hundreds of substructures, as well as lens and source uncertainties. We also find the \gls*{mlp} Mixer network works far better for such tasks than the convolutional architectures explored in other lensing analyses. Furthermore, we show that since \gls*{tmnre} learns a posterior function it enables direct statistical checks that would be extremely expensive with likelihood-based methods. Our results show that TMNRE is well-suited for analyzing complex lensing data, and that the full subhalo and line-of-sight halo population must be included when measuring the properties of individual dark matter substructures with this technique.