论文标题

通过主动学习进行预测性规模桥梁模拟

Predictive Scale-Bridging Simulations through Active Learning

论文作者

Karra, Satish, Mehana, Mohamed, Lubbers, Nicholas, Chen, Yu, Diaw, Abdourahmane, Santos, Javier E., Pachalieva, Aleksandra, Pavel, Robert S., Haack, Jeffrey R., McKerns, Michael, Junghans, Christoph, Kang, Qinjun, Livescu, Daniel, Germann, Timothy C., Viswanathan, Hari S.

论文摘要

在整个计算科学中,越来越需要利用原始计算马力的持续改进,通过对蛮力的尺度桥接增加了网格元素的数量,从而实现了更大的身体保真度。例如,在不考虑分子级相互作用的情况下,不可能对纳米多孔培养基中转运的定量预测,从紧密的页岩地层提取至关重要。同样,惯性限制融合模拟依赖于数值扩散来模拟分子效应,例如非本地运输和混合,而无需真正考虑分子相互作用。考虑到这两个不同的应用程序,我们开发了一种新颖的功能,该功能使用主动学习方法来优化局部细尺度模拟的使用,以告知粗尺度流体动力学。我们的方法解决了三个挑战:预测连续性粗尺度轨迹,以推测执行新的精细分子动力学计算,动态地更新细度计算中的粗尺度,并量化神经网络模型中的不确定性。

Throughout computational science, there is a growing need to utilize the continual improvements in raw computational horsepower to achieve greater physical fidelity through scale-bridging over brute-force increases in the number of mesh elements. For instance, quantitative predictions of transport in nanoporous media, critical to hydrocarbon extraction from tight shale formations, are impossible without accounting for molecular-level interactions. Similarly, inertial confinement fusion simulations rely on numerical diffusion to simulate molecular effects such as non-local transport and mixing without truly accounting for molecular interactions. With these two disparate applications in mind, we develop a novel capability which uses an active learning approach to optimize the use of local fine-scale simulations for informing coarse-scale hydrodynamics. Our approach addresses three challenges: forecasting continuum coarse-scale trajectory to speculatively execute new fine-scale molecular dynamics calculations, dynamically updating coarse-scale from fine-scale calculations, and quantifying uncertainty in neural network models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源