论文标题

量子厅效应的边界条件

Boundary conditions for the quantum Hall effect

论文作者

Angelone, Giuliano, Asorey, Manuel, Facchi, Paolo, Lonigro, Davide, Martinez, Yisely

论文摘要

我们使用边界条件来研究有限大小对霍尔电导率的影响,制定了整数量子霍尔在无限条上的自洽模型。通过利用沿条带的翻译对称性,我们确定系统的一般光谱特性,以符合这种对称性的大量边界条件,以及(纤维)罗宾边界条件的全光谱。特别是,我们发现后者引入了一种没有经典类似物的新状态,并为霍尔电导率的量化模式增加了更精细的结构。此外,我们的模型还可以预测在施加电场的高值下的量子霍尔效应的分解。

We formulate a self-consistent model of the integer quantum Hall effect on an infinite strip, using boundary conditions to investigate the influence of finite-size effects on the Hall conductivity. By exploiting the translation symmetry along the strip, we determine both the general spectral properties of the system for a large class of boundary conditions respecting such symmetry, and the full spectrum for (fibered) Robin boundary conditions. In particular, we find that the latter introduce a new kind of states with no classical analogues, and add a finer structure to the quantization pattern of the Hall conductivity. Moreover, our model also predicts the breakdown of the quantum Hall effect at high values of the applied electric field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源