论文标题

探索具有高颗粒状量热量器的Hadronic阵雨的结构和Hadronic Energy重建

Exploring the structure of hadronic showers and the hadronic energy reconstruction with highly granular calorimeters

论文作者

Cabrera, Héctor García

论文摘要

由Calice协作开发和操作的电磁成像的原型和HADRONIC成像的原型为多种活性传感器元素和不同的吸收材料提供了前所未有的高度颗粒状淋浴数据。在本演讲中,我们讨论了详细的测量空间和时间结构,以表征钙仪中的Hadronic Cascades的不同阶段,然后使用不同的HADROCON PHYSICS模型面对基于Geant4的模拟。这些研究还扩展到原型中使用的两种不同的吸收材料,钢和钨。探测器的高粒度在单个探测器和组合电磁系统和辐射系统的重建中被利用,利用软件补偿和半数字能量重建。结果包括新的仿真研究,以预测颗粒量热的可靠运行。此外,我们还展示了粒度和多元分析算法的应用如何使近距离粒子的分离。我们将与硅,闪烁体和气态活性元件有关这些重建技术的性能,以进行不同的电磁和辐射热量计。颗粒热量表也是应用机器学习技术的理想测试场。我们将概述如何将这些技术应用于Calice数据和Calice模拟框架。

Prototypes of electromagnetic and hadronic imaging calorimeters developed and operated by the CALICE collaboration provide an unprecedented wealth of highly granular data of hadronic showers for a variety of active sensor elements and different absorber materials. In this presentation, we discuss detailed measurements of the spatial and the time structure of hadronic showers to characterise the different stages of hadronic cascades in the calorimeters, which are then confronted with GEANT4-based simulations using different hadronic physics models. These studies also extend to the two different absorber materials, steel and tungsten, used in the prototypes. The high granularity of the detectors is exploited in the reconstruction of hadronic energy, both in individual detectors and combined electromagnetic and hadronic systems, making use of software compensation and semi-digital energy reconstruction. The results include new simulation studies that predict the reliable operation of granular calorimeters. Further we show how granularity and the application of multivariate analysis algorithms enable the separation of close-by particles. We will report on the performance of these reconstruction techniques for different electromagnetic and hadronic calorimeters, with silicon, scintillator and gaseous active elements. Granular calorimeters are also an ideal testing ground for the application of machine learning techniques. We will outline how these techniques are applied to CALICE data and in the CALICE simulation framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源