论文标题
合作通信中语义年龄:通过离线增强学习加快对真实的模拟
Age of Semantics in Cooperative Communications: To Expedite Simulation Towards Real via Offline Reinforcement Learning
论文作者
论文摘要
信息指标的年龄无法正确描述状态更新的内在语义。在智能反映表面上的合作继电器通信系统中,我们提出了语义年龄(AOS),以衡量状态更新的语义新鲜度。具体而言,我们专注于从源节点(SN)到目标的状态更新,该状态被称为马尔可夫决策过程(MDP)。 SN的目的是在最大发射功率约束下最大程度地提高AOS和能源消耗的预期满意度。为了寻求最佳的控制政策,我们首先在派利时间差异学习框架下推出了在线深层演员批评(DAC)学习方案。但是,实践实施在线DAC在SN和系统之间无限重复的互动中构成了关键的挑战,这可能是危险的,尤其是在探索过程中。然后,我们提出了一种新颖的离线DAC方案,该方案估算了先前收集的数据集的最佳控制策略,而无需与系统进行任何进一步的交互。数值实验验证了理论结果,并表明我们的离线DAC方案在在线DAC方案和最具代表性的基线方面的表现显着超过了平均效用,这表明了对数据集质量的强大鲁棒性。
The age of information metric fails to correctly describe the intrinsic semantics of a status update. In an intelligent reflecting surface-aided cooperative relay communication system, we propose the age of semantics (AoS) for measuring semantics freshness of the status updates. Specifically, we focus on the status updating from a source node (SN) to the destination, which is formulated as a Markov decision process (MDP). The objective of the SN is to maximize the expected satisfaction of AoS and energy consumption under the maximum transmit power constraint. To seek the optimal control policy, we first derive an online deep actor-critic (DAC) learning scheme under the on-policy temporal difference learning framework. However, implementing the online DAC in practice poses the key challenge in infinitely repeated interactions between the SN and the system, which can be dangerous particularly during the exploration. We then put forward a novel offline DAC scheme, which estimates the optimal control policy from a previously collected dataset without any further interactions with the system. Numerical experiments verify the theoretical results and show that our offline DAC scheme significantly outperforms the online DAC scheme and the most representative baselines in terms of mean utility, demonstrating strong robustness to dataset quality.