论文标题

自适应输出反馈模型预测控制

Adaptive Output Feedback Model Predictive Control

论文作者

Dey, Anchita, Dhar, Abhishek, Bhasin, Shubhendu

论文摘要

在状态和输入方面存在硬性约束的情况下,对于不确定系统的模型预测控制(MPC)是一个非平凡的问题,在没有状态测量的情况下,挑战增加了很多。在本文中,我们提出了一种基于自适应观察者和鲁棒MPC的新型组合的自适应输出反馈MPC技术,用于单输入单输出离散时间线性时间不变系统。在每次瞬间,自适应观察者都会提供对状态和系统参数的估计值,然后在MPC优化程序中利用这些状态和系统参数,同时稳健地考虑估计错误。对优化问题的解决方案导致状态估计轨迹所在的同型管。真实状态在较大的外管内演变,该管子通过增加了同型管截面周围的状态估计误差的集合而获得的较大的外管。提供了递归可行性的证明,以实现拟议的“同型和不变”两管方法,并在学术系统上进行了模拟结果。

Model predictive control (MPC) for uncertain systems in the presence of hard constraints on state and input is a non-trivial problem, and the challenge is increased manyfold in the absence of state measurements. In this paper, we propose an adaptive output feedback MPC technique, based on a novel combination of an adaptive observer and robust MPC, for single-input single-output discrete-time linear time-invariant systems. At each time instant, the adaptive observer provides estimates of the states and the system parameters that are then leveraged in the MPC optimization routine while robustly accounting for the estimation errors. The solution to the optimization problem results in a homothetic tube where the state estimate trajectory lies. The true state evolves inside a larger outer tube obtained by augmenting a set, invariant to the state estimation error, around the homothetic tube sections. The proof for recursive feasibility for the proposed `homothetic and invariant' two-tube approach is provided, along with simulation results on an academic system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源