论文标题

D&D:从动态相机学习人类动态

D&D: Learning Human Dynamics from Dynamic Camera

论文作者

Li, Jiefeng, Bian, Siyuan, Xu, Chao, Liu, Gang, Yu, Gang, Lu, Cewu

论文摘要

来自单眼视频的3D人姿势估计最近看到了显着改善。但是,大多数最先进的方法是基于运动学的,它们容易出现具有明显伪影的物理上令人难以置信的运动。当前基于动态的方法可以预测物理上合理的运动,但仅限于具有静态相机视图的简单场景。在这项工作中,我们介绍了D&D(从动态摄像机中学习人类动态),该法律利用物理定律使用移动的摄像头从野外视频中重建3D人类运动。 D&D引入了惯性力控制(IFC),以考虑动态摄像机的惯性力来解释非惯性局部框架中的3D人运动。为了学习有限注释的接地接触,我们开发了概率接触扭矩(PCT),该概率是通过与接触概率的可区分抽样计算的,并用于产生动作。接触状态可以通过鼓励模型产生正确的动作来弱监督。此外,我们提出了一个细心的PD控制器,该控制器使用时间信息来调整目标姿势状态,以获得平稳而准确的姿势控制。我们的方法完全是基于神经的,并且在物理引擎中没有离线优化或模拟的情况下运行。大规模3D人类运动基准的实验证明了D&D的有效性,在该基于最新的基于动力学的方法和基于动力学的方法中,我们表现出卓越的性能。代码可从https://github.com/jeffsjtu/dnd获得

3D human pose estimation from a monocular video has recently seen significant improvements. However, most state-of-the-art methods are kinematics-based, which are prone to physically implausible motions with pronounced artifacts. Current dynamics-based methods can predict physically plausible motion but are restricted to simple scenarios with static camera view. In this work, we present D&D (Learning Human Dynamics from Dynamic Camera), which leverages the laws of physics to reconstruct 3D human motion from the in-the-wild videos with a moving camera. D&D introduces inertial force control (IFC) to explain the 3D human motion in the non-inertial local frame by considering the inertial forces of the dynamic camera. To learn the ground contact with limited annotations, we develop probabilistic contact torque (PCT), which is computed by differentiable sampling from contact probabilities and used to generate motions. The contact state can be weakly supervised by encouraging the model to generate correct motions. Furthermore, we propose an attentive PD controller that adjusts target pose states using temporal information to obtain smooth and accurate pose control. Our approach is entirely neural-based and runs without offline optimization or simulation in physics engines. Experiments on large-scale 3D human motion benchmarks demonstrate the effectiveness of D&D, where we exhibit superior performance against both state-of-the-art kinematics-based and dynamics-based methods. Code is available at https://github.com/Jeffsjtu/DnD

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源