论文标题
相互和谐:双重对比网络的顺序建议
Mutual Harmony: Sequential Recommendation with Dual Contrastive Network
论文作者
论文摘要
随着当今流媒体数据的爆发,顺序建议是实现时间认识的个性化建模的有前途的解决方案。它旨在根据历史项目序列推断给定用户的下一个相互作用项目。最近的一些著作倾向于通过对历史项目的随机掩盖来改善顺序建议,从而产生自我监管的信号。但是,这种方法确实会导致项目序列和不可靠的信号。此外,现有的顺序推荐模型仅以用户为中心,即基于按时间顺序排列的历史项目来预测候选项目的概率,该项目忽略了是否可以成功推荐提供者的项目。以用户为中心的建议将使提供商不可能公开其新项目,而无法考虑用户和项目维度之间的兼顾交互。在本文中,我们提出了一个新颖的双对比网络(DCN),以实现用户和项目提供商之间的相互和谐,从而生成基本真相自我监督信号,以通过以项目为中心的维度通过辅助用户序列进行顺序建议。具体而言,我们提出双重表示对比学习,以最大程度地降低给定用户/项目/项目的表示与历史项目/用户之间的欧几里得距离来完善表示的学习。在第二个对比度学习模块之前,我们执行下一个用户预测,以捕获某些类型的用户偏爱的项目的趋势,并为项目提供商提供个性化的探索机会。最后,我们进一步提出了双重兴趣对比学习,以自我意识从下一个项目/用户的预测和匹配概率的静态兴趣中自我意识。在四个基准数据集上的实验验证了我们提出的方法的有效性。
With the outbreak of today's streaming data, the sequential recommendation is a promising solution to achieve time-aware personalized modeling. It aims to infer the next interacted item of a given user based on the historical item sequence. Some recent works tend to improve the sequential recommendation via random masking on the historical item so as to generate self-supervised signals. But such approaches will indeed result in sparser item sequence and unreliable signals. Besides, the existing sequential recommendation models are only user-centric, i.e., based on the historical items by chronological order to predict the probability of candidate items, which ignores whether the items from a provider can be successfully recommended. Such user-centric recommendation will make it impossible for the provider to expose their new items, failing to consider the accordant interactions between user and item dimensions. In this paper, we propose a novel Dual Contrastive Network (DCN) to achieve mutual harmony between user and item provider, generating ground-truth self-supervised signals for sequential recommendation by auxiliary user-sequence from an item-centric dimension. Specifically, we propose dual representation contrastive learning to refine the representation learning by minimizing the Euclidean distance between the representations of a given user/item and historical items/users of them. Before the second contrastive learning module, we perform the next user prediction to capture the trends of items preferred by certain types of users and provide personalized exploration opportunities for item providers. Finally, we further propose dual interest contrastive learning to self-supervise the dynamic interest from the next item/user prediction and static interest of matching probability. Experiments on four benchmark datasets verify the effectiveness of our proposed method.