论文标题
非线性异构贝叶斯分散数据融合
Nonlinear Heterogeneous Bayesian Decentralized Data Fusion
论文作者
论文摘要
开发了因子图分散数据融合(FG-DDF)框架,用于分析和开发{异质贝叶斯分散融合问题中有条件独立性,其中机器人在不同但随机状态的重叠子集上更新和融合了PDF。这允许机器人有效地使用较小的概率模型,并稀疏的消息传递到准确,可扩展的融合较大的全球关节状态PDF的相关局部部位,同时考虑机器人之间的数据依赖关系。虽然先前的工作需要限制有关网络连接性和模型线性性的假设,但本文放宽了这些假设,以探索在更一般的设置中FG-DDF的适用性和鲁棒性。我们开发了一种新的异质融合规则,该规则概括了此类情况的同质协方差相交算法,并在多机器人跟踪和本地化场景中对其进行测试,并在通信辍学下使用非线性运动/观察模型进行了测试。仿真和硬件实验表明,实际上,FG-DDF在这些更实用的工作条件下继续提供一致的过滤估计,同时将计算和通信成本降低了99 \%以上,从而使可扩展现实世界中的多启动系统的设计可以设计。
The factor graph decentralized data fusion (FG-DDF) framework was developed for the analysis and exploitation of conditional independence in {heterogeneous Bayesian decentralized fusion problems, in which robots update and fuse pdfs over different, but overlapping subsets of random states. This allows robots to efficiently use smaller probabilistic models and sparse message passing to accurately and scalably fuse relevant local parts of a larger global joint state pdf while accounting for data dependencies between robots. Whereas prior work required limiting assumptions about network connectivity and model linearity, this paper relaxes these to explore the applicability and robustness of FG-DDF in more general settings. We develop a new heterogeneous fusion rule which generalizes the homogeneous covariance intersection algorithm for such cases and test it in multi-robot tracking and localization scenarios with non-linear motion/observation models under communication dropouts. Simulation and hardware experiments show that, in practice, the FG-DDF continues to provide consistent filtered estimates under these more practical operating conditions, while reducing computation and communication costs by more than 99\%, thus enabling the design of scalable real-world multi-robot systems.